
Introduction of Linux
Huang Cheng-Chao

Dept. of Comput. Sci. & Tech.
East China Normal University

Outline

PART I
· Brief Introduction

· Basic Conceptions & Environment

· Basic Commands

· Shell Script

PART II
· Text Editor (Vim)

· Compile & Debug (for C)

PART III
· Install & Configure a Virtual Machine

Part I

PART I

· Brief Introduction

· Basic Conceptions & Environment

· Basic Commands

· Shell Script

Brief Introduction

Linux (/ˈlɪnəks/)

a open-source Unix-like computer operating system originally

created by Linus Torvalds with the assistance of developers

around the world.

Torvalds UniXLinus Torvalds

Brief Introduction

History

1969

UNIX OS

AT&T Bell Laboratory

Ken Thompson,

Dennis Ritchie

1970s

BSD (Berkeley Software Distribution)

1983

GNU Project

(GNU's Not Unix)

Richard Stallman

1987

MINIX OS (for education)

Andrew S. Tanenbaum

1991

Linux Kernel

Linus Torvalds

Linux Distributions

· RedHat

· Fedora

· Suse

· Debian

……

Brief Introduction

Widely Used

Be widely used in business, education or scientific research.

96.55% of web servers run Linux (May 2015)

for Big Data & Cloud Computingfor Mobile Devices

Part I

PART I

· Brief Introduction

· Basic Conceptions & Environment

· Basic Commands

· Shell Script

Basic Conceptions & Environment

CPU

Memory

Devices

Linex Kernel

The most important component

of Linux OS, containing all the

operating system’s core functions

and the device drivers

·memory management

·process scheduling

·file system

……

Linux Kernel

Programs

Basic Conceptions & Environment

Linux Kernel

USERShell (CLI shell)

Command Line Interface

A program which accepts commands as

text input and converts commands to

appropriate operating system functions.

Terminal ↔ Shell

The terminal send information to the shell,

receive and display the information from

the shell

Shell

user@ubuntu:/$

x

Basic Conceptions & Environment

File System

tree structure, with the root directory “ / ”

each node is either a file or a directory of files

full path name /home/Alice/...... (start from /)

~ (user’s directory i.e. /home/username)

relative path name . (the current directory)

.. (the parent of the current directory)

/

bin dev etc lib tmp usr home

Alice Bob

Basic Conceptions & Environment

File System

/bin : essential tools and other programs

/dev : files representing the system’s hardware devices

/etc : system configuration files

/home : the home directory for all system’s users

/lib : essential system library files

/proc : files that give information about current system

/usr : files related to user tools and applications

/

bin dev etc lib tmp usr home

Alice Bob

Basic Conceptions & Environment

User & Group

The system determines whether or not a user or group can access a

file or directory.

There is a special user called Super User or the root which has

permission to access any file and directory.

Three Permissions

r – read w – write x – execute

Permissions for three categories of users

- r w x r w x - - x

owner group others

Basic Conceptions & Environment

Environment Variables

Environment variables are a set of values that can affect the way

running processes will behave on a computer.

·PATH -- Contains a colon-separated list of directories that the shell

searches for commands that do not contain a slash in their name.

·HOME -- Contains the location of the user's home directory.

……

Set The Environment Variables:

export VARIABLE = value (temporary)

/etc/profile (permanent, for all users)

.bash_profile (permanent, for one user)

Basic Conceptions & Environment

Environment Variables

~/Desktop/Folder1/test.out -- a program to output “Hello Linux!”

user1@ubuntu:~/Desktop/Folder1$./test.out

Hello Linux!

user1@ubuntu:~/Desktop/Folder1$ cd ..

user1@ubuntu:~/Desktop$./test.out

test.out command not found

user1@ubuntu:~/Desktop$ export

PATH=$PATH:~/Desktop/Folder1

user1@ubuntu:~/Desktop$./test.out

Hello Linux!

Part I

PART I

· Brief Introduction

· Basic Conceptions & Environment

· Basic Commands

· Shell Script

Basic Commands

command [-options] [arguments]

Commands are often followed by one or more options that modify

their behavior, and further, by one or more arguments, the items upon

which the command acts.

·man help --help

·ls

·cd mkdir mvdir

·rm mv cp

·find locate grep

·cat

·> >> | xarg

·sed awk

Basic Commands

man (manual)

provide a formal piece of documentation called a manual

or man page.

$ man ls

help

similar to “man”, but more concise

$ help cd

--help

Display a description of the command's supported syntax

and options

$ ls --help

Basic Commands

ls (list)
display a list of files and subdirectories

-a list all files, even those with names that beginwith a period,

which are normally not listed (i.e., hidden).

-l Display results in long format.

user1@ubuntu:~$ ls

Desktop Document Templates Downloads Public

user1@ubuntu:~$ ls –l /bin

-rwxr-xr-x 1 root root 1021112 Oct 7

2014 bash
permission own size (byte) file (or dir.) name

link number group creating date

(or files number)

Basic Commands

cd (changes directory)
$ cd dir1 changes the working directory to “dir1”

$ cd - changes to the previous working directory

mkdir (make directory)
$ mkdir .../dir1 Create the directory named “dir1”,

if the path “…” exists.

$ mkdir -p …/dir1 If the path “…” doesn’t exist,

create each dirctories in it.

rmdir (remove empty directory)
$ rmdir …/dir1 Remove a single directory named “dir1”,

if it’s empty.

$ rmdir -p …/dir1 Also remove the directories in the path

“…”,

if they become empty.

Basic Commands

rm (remove)

-r (--recursice) recursively delete directories.

if a directory being deleted has subdirectories,

delete them too.

-f (--force) ignore nonexistent files and do not prompt.

mv (move)
$ mv [-i] file1 file2 Move file1 to file2.

If file2 exists, it will be overwritten.

-i prompt user before it is overwritten

$ mv dir1 dir2 Move dir1 (and its contents) into dir2.

If dir2 does not exist, it will be created.

$ mv file1 dir1 Move file1 into dir1. dir1 should

already exist.

Basic Commands

cp (copy)

copy files or directories (similar to “mv”, but preserve the origin)

$ cp [-i] file1 file2 Copy file1 to file2.

If file2 exists, it will be overwritten.

-i prompt user before it is overwritten

$ copy -r dir1 dir2 Copy dir1 (and its contents) into dir2.

If dir2 does not exist, it will be created.

$ copy file1 dir1 Copy file1 into dir1. dir1 should

already exist.

$ copy dir1/* dir2 Copy all the files in dir1 into dir2.

Wildcards

* Matches any characters ex*. jpg

? Matches any single character ex??-??-??. jpg

Basic Commands

find
searching for files or directories (files meeting specific criteria.)

$ find dir1 -name “*.jpg” -size +1M

finding any files whose name ending with “.jpg”

and size larger than 1M in dir1

-type -user -group …

find Logical Operators

-and (-a) -or (-o) -not (!)

$ find dir1 \(-name “*.png” \) –o \(-name “*.jpg” –a ! -

user “root” \)

locate (similar to “find -name”)
performs a rapid database search, faster than “find”

better to “updatedb” (update the database manually) before “locate”

grep (global regular expression print)

searches text files for the occurrence of a specified regular expression

and outputs any line containing a match to standard output.

$ grep [-options] regex [file…]

-i Ignore case.

Do not distinguish between upper and lower case characters.

-l Print the name of each file that contains a match

-h For multi-file searches, suppress the output of filenames.

Basic Commands

cat (concatenate)

read one or more files and copies them to standard output.

$ cat [file1…]

If cat is not given any arguments, it reads from standard input, by

default, attached to the keyboard.

Type a <ctrl>+d to tell “cat” that it has reached end of file (EOF) on

standard input.

$ cat

Hello World! <ctrl>+d

Hello World!

Basic Commands

> & >> (redirection)

$ command1 > file1 Change the destination of standard

output

$ cat file1 file2 > file3 Concatenate file1 file2, and output

into file3.

If file3 exists, it will be overwritten.

$ cat file1 file2 >> file3 The output will not overwrite the

destination,

but attaching to the back.

| (pipeline)
$ command1 | command2

command1 has standard output, and command2 has standard input.

$ ls /bin /usr/bin | sort

Basic Commands

xargs

It accepts input from standard input and converts it into an argument

list for a specified command.

$ find /bin -name “a*” | list -l ×

$ find /bin -name “a*” | xargs list -l √

-a file using file as the standard input

$ find /bin -name “a*” > file1.txt

$ xarg -a file1.txt list -l

-e ‘flag’ set a separator (‘ ’ or ‘\t’ by default)

-n num set the maximum number of arguments

Basic Commands

sed (stream editor)

awk (Aho, Weinberg & Kernighan)

·powerful for text editing, especially for well-formed data.

·prefer to process the data as rows

sed process the whole rows

awk useful for well-formed data

able to process fields (columns) in rows

used like a programming language

do complex operations (if else while for …)

Basic Commands

sed (stream editor)

awk (Aho, Weinberg & Kernighan)

Example :

Basic Commands

user1 a

user2 undefined

user3 b

user4 c

user5 undefined

user1 a

user2 user2

user3 b

user4 c

user5 user5

$ awk -F : '$2==“undefined" {printf("%s\n",$1)}'

~/file1

Part I

PART I

· Brief Introduction

· Basic Conceptions & Environment

· Basic Commands

· Shell Script

Shell Script

Interactive VS. Shell Script

shell script -- a computer program designed to be run

(interpretive execution) by the shell.

·convenient: reusable

·capable: variables, branches, loops…

a script file with filename extension “.sh”

#!/bin/bash

……

……

run a script

$ chmod 777 ???.sh $ bash ./???.sh

$./???.sh

Shell Script

Variables

Define, Assignment & Read

VariableName=value

read VariableName

·no space between VarName and the equality sign

·first letter: a-z A-Z

·no keywords of shell

Use a variable

$VariableName

$0 filename of the script

$n the n-th argument

$# the number of the arguments

$HOME user directory

$$ pid

Some System Variable

Shell Script

Variables

Example :

test.sh

#!/bin/bash

read a

read b

c=$[($a+$b)**$a]

each $c

using arguments

#!bin/bash

echo $[($1+$2)**$1]

$ chmod 777 ./test.sh

./test.sh

2

3

25

./test.sh 2 3

It will output (2+3)**3 if without $[]

Shell Script

String

single quotes

str=‘no variables or escape character’

double quotes

v=‘variables’

str=“$v or \“escape character\””

connecting

str1=“connecting strings”

str2=“simple”

str3=$str1“ is ”$str2

length ${#string}

substring ${#string:begin:end}

Shell Script

Printf

printf format-string [arguments…]

Different from “printf” in C

·no ()

·using space between two arguments

if the number of arguments is greater than the number of % in format,

The format-string will be reused repeatedly

printf “%s %s\n” 1 2 3 4

1 2

3 4

Shell Script

Branches

if [condition]

then

…

else

…

fi

if [condition1]; then

…

elif [condition2]; then

…

else

…

fi

Numerical Comparison Operator

Operator Remark

-eq ==

-ne !=

-gt >

-lt <

-ge >=

-le <=

Operator Remark

= == for string

!= != for string

-z if a string is emtpty

-f / -d is file / is dir.

-r / -w / -x check permission

-e if a file/dir. exists

Other Operator

Shell Script

Loops

for variable in list

do

…

done

while [condition]

do

…

done

break loop_num

continue loop_num

for FILE in $HOME/*

do

echo $FILE

done

count=0

while [$count –lt 5]

do

count=$[$count+1]

echo $count

done

Part II

PART II

· Text Editor (Vim)

· Compile & Debug (for C)

·Vim’s interface is not based on menus or icons,

but on commands given in a text user interface.

Intall

edit & update the sources

edit the source list file: /etc/apt/sources.list

$ sudo apt-get update

Super User Do Advanced Package Tool

install vim

$ sudo apt-get install vim

obtain a vim’s tutorial

$ vimtutor

Text Editor (Vim)

Three Modes

Command mode: all keystrokes are interpreted as commands

Insert mode: most keystrokes are inserted as text

Visual mode: helps to visually select some text, may be seen

as a submode of the the command mode.

Text Editor (Vim)

Insert Mode Command Mode Visual Mode

<ESC>

i, I, a, A

v, V, <Ctrl>+v

<ESC>

Quit and Save

w write the current buffer to disk (save)

q close the current window

x save and close

q! close without save

Scroll the Screen

<Ctrl>+f 1 page

<Ctrl>+d 1/2 page

<Ctrl>+e 1 line

<Ctrl>+y 1 line

<Ctrl>+u 1/2 page

<Ctrl>+b 1 page

Text Editor (Vim)

Movement of the Cursor

j =↑ k =↓ h =← l =→
0 first column of the line

^ first non-blank character of the line

w jump to next word

W jump to next word, ignore punctuation

e jump to word-end

E jump to word-end, ignore punctuation

b jump to word-beginning

B jump to word-beginning, ignore punctuation

ge jump to previous word-ending

gE jump to previous word-ending, ignore punctuation

g_ jump to last non-blank character of the line

$ jump to the last character of the line

% jump to the matching bracket

Text Editor (Vim)

Editing

d delete the characters from the cursor position

to the position given by the next command (FCTN)

c cut the character FCTN

x delete the character under the cursor

X delete the character before the cursor

y copy the characters FCTN

p paste previous deleted or copied text

after the current cursor position

P paste previous deleted or copied text

before the current cursor position

r replace the current character with the newly typed one

s substitute the text FCTN with the newly typed one

. repeat the last insertion or editing command

Doubling d , c or y operates on the whole line.

Text Editor (Vim)

Visual Block
<Ctrl>+v enter the visual block mode

selected a rectangle of text:

i insert text in front of it (switch to insert mode)

a insert text after it

c insert text to replace it

operates on the multiple columns

· Completion

· Searching & Replacing

· Marks

Text Editor (Vim)

i n c l d e < s t d i o . h >

i n c l d e < s t d l i b . h >

i n c l d e < m a t h . h >

i n c l u d e < s t d i o . h >

i n c l u d e < s t d l i b . h >

i n c l u d e < m a t h . h >

type the command “a”

then type character “u”

Part II

PART II

· Text Editor (Vim)

· Compile & Debug (for C)

Compilation & Execution

GCC (GNU C Compiler)  (GNU Compiler Collection)

$ gcc test.c compile the C source file

produce an executable file named (by default) a.out

$./a.out run the program

Useful Flags(Options)

$ gcc -o TEST test.c to specify the executable file’s

name

$ gcc -Wall test.c gives much better warnings

$ gcc -g test.c to enable debugging with gdb

$ gcc -O test.c to turn on optimization

Compile & Debug (for C)

Linking with Libraries

Library

static version lib+name.a (-static)

dynamic version lib+name.so (default)

which can be found in the functions’ or libraries’ man page

some library routines do not reside in the C library

-l+name link with libraries manually

If the system can not find the library file in the default directory

(/usr/local/lib/ & /usr/lib)

-L+lib’s dir give the directory manually

Compile & Debug (for C)

Separate Compilation

complie a program with several separate files

$ gcc -c test1.c

$ gcc -c test2.c

...

$ gcc -c -o TEST test1.o test2.o …

-c compile to produce an object file, which is not executables

just machine-level representations of the source code

Compile & Debug (for C)

Makefiles

build the program automatelly according to the makefile

Makefiles are based on rules as:

target: prerequisite1 prerequisite2 ...

command1

command2

...

Complie the Program

(test1.c & test2.c)

$ make

$ make clean

Compile & Debug (for C)

TEST: test1.o test2.o

gcc -o TEST test1.o test2.o

test1.o: test1.c

gcc -c test1.c

test2.o: test2.c

gcc -c test2.c

clean:

rm -f test1.o test2.o

makefile

Debugging with GDB (GNU debugger)

$gdb enter the gdb environment

Compile & Debug (for C)

Command Remark

file <file name> load a excutable file

r run

c continue

b <line

number>

b <function

name>

set Breakpoint

s, n excute a line of source code

p <variable

name>
print the value of a variable

q quit

help

Part III

PART III

· Install & Configure a Virtual Machine

Virtual Machine
a virtual machine is an emulation of a particular computer system

Virtualization Software

provide (hardware) resources virtually to the new OS

·VMware

·Virtual Box

·Virtual PC

Install & Configure the Virtual Machine

virtualization software

operating systems

Operating System

Hardware

virtual machine

Virtual Machine
a virtual machine is an emulation of a particular computer system

Virtualization Software

provide (hardware) resources virtually to the new OS

·VMware

·Virtual Box

·Virtual PC

Install & Configure the Virtual Machine

virtualization software

(guest) operating systems

(Host) Operating System

Hardware

virtual machine

Install the Virtual Machine

VMware Workstation 9.0 + Ubuntu 14.04 LTS (kernel 3.19)

·Download the Setup File of Vmware 9.0

·Download the Ubuntu Ubuntu 14.04 LTS from the

official website www.ubuntu.com/download/desktop

·Install VMware 9.0

·Create a Virtual Machine in the VMware

Install & Configure a Virtual Machine

Create a Virtual Machine

Install & Configure a Virtual Machine

Create a Virtual Machine

Install & Configure a Virtual Machine

Create a Virtual Machine

Install & Configure a Virtual Machine

Select the .iso file of ubuntu

downloaded before

Fill the user name and

the password of the super user

Create a Virtual Machine

Install & Configure a Virtual Machine

Fill the VM’s name and

select the location of the VM

Set the number of processors for VM

1 processor 1 cores are enough

Create a Virtual Machine

Install & Configure a Virtual Machine

Set the memory for VM

more than 1024MB

Set the network type

NAT

Create a Virtual Machine

Install & Configure a Virtual Machine

Set the I/O controller type

default

Create a virtual disk

composed of files on host OS

Create a Virtual Machine

Install & Configure a Virtual Machine

Set the disk type

default

disk size: 15GB is enough

Split into multiple files: easy to move

Create a Virtual Machine

Install & Configure a Virtual Machine

Select the location of disk files Finish

