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Anouncement

* Project 1 due
- 21:00 Oct. 4th
« FTP

- In campus: direct connection

- QOut of campus: VPN

- Windows: cmd - \\222.204.249.4:5010
- Linux: ftp 222.204.249.4 5010



Operating System Labs

 Review of process

- Concept
- Process API introduction

* Project 2



Process

 Virtualizing the CPU

- Multi-task
- How to provide the illusion of many CPUs?
- Time sharing



Process

 The abstraction: Process
- Running programs
 What does a process consist of?

- CPU

 Program Counter (PC)
 Stack Pointer / Frame Pointer

- Memory
« Address space
- Disk
« Set of file descriptors



Process

 What does a process consist of?

- proc file system

- Example
e cat /proc/<PID>/status
« cat /proc/<PID>/maps
« cat /proc/<PID>/fd
» cat /proc/<PID>/io

- Provide a method of communication between
kernel space and user space

¢ PpS command



Process

e Process API

- Create

- Destroy

- Wait

- Misellaneous Control
- Get status



Details of process creation

Process

Load code and static data

Establish stack

* |local variables, function calls
Init heap

 malloc, free
Allocate file descriptors

« STDIN _FILENO
« STDOUT FILENO
« STDERR FILENO

CPU




Process

e Process States

Descheduled

<~——— | Ready

Scheduled

/O: |n|t|a /I/O: done

Blocked



e Process States

Process

Time Processyg Process; Notes
1 Running Ready
2 Running Ready
3 Running Ready
! Running Ready Processp now done
5 - Running
6 - Running
4 — Running
8 — Running  Process; now done
Time Processy Process; Notes
1 Running Ready
2 Running Ready
2 Running Ready Process initiates I/O
4 Blocked  Running Processg is blocked,
5 Blocked Running so Process; runs
6 Blocked  Running
7 Ready Running I/O done
8 Ready Running Process1 now done
9 Running =
10 Running — Processy now done



// the registers xv6 will save and restore
// to stop and subsequently restart a process

struct context {
int eip;
int esp;
int ebx;
int ecx;
int edx;
int esij;
int edi;
int ebp;
}i

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO,
RUNNARBLE, RUNNING,

SLEEPING,
ZOMBIE };

// the information xv6 tracks about each process
// including its register context and state

struct
char
uint
char

proc |
*xmem;
SZ;
rkstack;

enum proc_state state;

int pid;

struct proc *xparent;

void =xchan;

int killed;

struct file *ofile[NOFILE];
struct inode =*cwd;

struct context context;
struct trapframe *tf;

};

//
//
//
//
//
//
//
//
//
//
//
//
//
//

Start of process memory

Size of process memory
Bottom of kernel stack

for this process

Process state

Process ID

Parent process

If non—zero, sleeping on chan
If non—-zero, have been killed
Open files

Current directory

Switch here to run process
Trap frame for the

current interrupt



Process

 Virtualizing the CPU

- Low level mechanisims
« Context switch

- High level intelligence
« Scheduling policy




Process

e Low level mechanisims

- Direct Execution
e Just run a programm on CPU directly

OS Program

Create entry for process list
Allocate memory for program
Load program into memory
Set up stack with argc/argv
Clear registers
Execute call main()
Run main()
Execute return from main
Free memory of process
Remove from process list



Process

 Problems of direct execution

- No control
« Visit any memory address
 Open any file
« Directly play with hardwares (e.g. 1/O)

4 shift 4 X

| SEEM TO-HAVE LOST-CONTROL



Process

« Limited Direct Execution

- Kernel model and user model

- “restricted operations”
By the kernel

- When a thread need do restricted operations
e System call



Process

« Limited Direct Execution

 Need some hardware supports

- A bit in CPU identifies kernel/user mode
- “trap” Iinstruction
- “return-from-trap” instruction

- Save the regs before do the restricted
operation (kernel stack)



OS @ run
(kernel mode)

Hardware

Program
(user mode)

Run main()

éall system call
trap into OS



Process

e Switching between processes

- Cooperative approach
« OS trusts the process to yield CPU properly
- Incooperative approach

« OS revokes the control of CPU periodically
 Time interrupt
« Scheduler



OS @ boot
(kernel mode)

Hardware

initialize trap table

start interrupt timer

remember addresses of...
syscall handler
timer handler

start timer

interrupt CPU in X ms
OS @ run Hardware Program
(kernel mode) (user mode)
Process A

Handle the trap

Call switch () routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)

return-from-trap (into B)

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)

move to user mode
jump to B’s PC
Process B



Process

* Low-level mechanisims: summary

- Direct execution
- Limited direct execution
- Switch between processes



Process

 High level intelligence

- Schedulling policy

* First In, First Out

« Shortest job first

* Shortest time to complete first
« Round Roubin




Process

« Summary of CPU virtualization

- Low level mechanisims
* A little hardware support goes a long way
- Hige level mechanisims



Process

e Process API

- fork(), exec(), wait(), exit()

- Create, execute, wait and terminate a
process

- May be the strangest APl you've ever met



Process

 API
- fork()

* Create a new process
« Exactly copy the calling process

- The return code of fork() is different

« |n parent: fork() return the pid of the child
* In child: fork() return O

- Who will run first is not determined



Process

* API

- walit()
« Wait for child to finish his job
 The parent will not proceed until wait() return.

- walitpid()



Process

* API

- exec()
« Execute a different program in child process
- A group of system calls:

« execl, execv, execle, execve, execlp, execvp,
fexecv



Process

« Some Coding

- fork
- fork, walit

- fork, wait, execvp



Process

« What's happening behind fork()?

- The child get a “copy” of parent's data space,
stack, heap

« the system call: clone()
- “Copy-on-write”
 Not really copy the data, but share the data with
“read only” flag

 |f parent or child writes on a shared address, the
kernel make a copy of that piece of memory only
(usually a page)



Process

nat's happening behind fork()?
:i I es h a ri N g parent process table entry file table v-node table

file status ﬂagS v-node information

current file offset

— v_data
o fd fd file v-node pointer — i
flags  pointer

fd 0: i-node information

Qi [ 4L . F s s e s s e
fd 2: current file size

* File offsets 1] [ imode -

file status flags

current file offset

v-node pointer ——

v-node information

child process table entry

file status flags

current file offset | 00 | - - - - _ - _

fd file
flags  pointer D D etk i
£d.0: — v-node pointer —| i vnode —
fd 1: i
fd 2:

v-node information

Figure 8.2 Sharing of open files between parent and child after fork



Process

« What's happening behind fork()?

- Other shared data:

 User ID, group ID...
Current working directory
Environment

Memory mapping
Resources limits



Process

« What's happening behind exit()?

- Close all fds, release all memory, ...

- Inform the exit status to the parent process,
which can be captured by wait()



Process

« What's happening behind wait()?

- The parent terminates first?
 The init process (PID=0)
- The child terminates first?

 The kernel keeps a small amount of information
for every terminating process

« Available when the parent calls wait()
- PID, termination status, the amount of CPU time
e zombies




Process

« What's happen behind wait()/waitpid()

- wait(): block the caller until a child process
terminates

- waitpid(): wait which child, and some other
options



Process

 What's happening behind exec()?

- Replace the current process with a new
program from disk

« Text, data, heap, stack
- Start from the main() of that program

CPU Memory




Process

 Process APl summary

- fork(): create a new process

- walt(): wait for a child

- exit(): destroy a process

- exec(): execute a programm in child



Project?2

* Implement your own shell

- Use fork, wait, execvp
- Also open, close, dup?



Project2 Detalls

e Basic shell

- Run your shell by: ./mysh
- It will print a prompt:

mysh>
- You can type some commands

mysh> Is

- Hit ENTER, the command will be executed



Project2 Detalls

e« Build-in Commands

- When “mysh” execute a command, it will
check wether it is a build-in or not.

- For build-in commands, you should involve
your implementation.
- They are:
o exit
e wait
* Cd
« pwd



Project2 Detalls

« Redirection
- Your shell should support redirection:

mysh> |Is -| > output

- The file “output” contain the result of “Is -|”



Project2 Detalls

« Background Jobs

- Your shell should be able to run jobs in the
background

mysh> |s &

— Your shell will continue to work rather than
wait.



Project2 Detalls

« Batch mode

- Your shell should be able to run in batch
mode

Jmysh batch file

- Your shell will run the commands in batch _file
- E.g, “batch file” contains

s -

cat batch_file



Project2 Detalls

 Bonus: Pipe

- The pipe connect the input/output of different
commands

mysh> grep “hello” FILE | wc -

- How many lines have “hello”
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