Operating System Labs

Yuanbin Wu
cs@ecnu

Anouncement

* Project 1 due
- 21:00 Oct. 4th
« FTP

- In campus: direct connection

- QOut of campus: VPN

- Windows: cmd - \\222.204.249.4:5010
- Linux: ftp 222.204.249.4 5010

Operating System Labs

 Review of process

- Concept
- Process API introduction

* Project 2

Process

 Virtualizing the CPU

- Multi-task
- How to provide the illusion of many CPUs?
- Time sharing

Process

 The abstraction: Process
- Running programs
 What does a process consist of?

- CPU

 Program Counter (PC)
 Stack Pointer / Frame Pointer

- Memory
« Address space
- Disk
« Set of file descriptors

Process

 What does a process consist of?

- proc file system

- Example
e cat /proc/<PID>/status
« cat /proc/<PID>/maps
« cat /proc/<PID>/fd
» cat /proc/<PID>/io

- Provide a method of communication between
kernel space and user space

¢ PpS command

Process

e Process API

- Create

- Destroy

- Wait

- Misellaneous Control
- Get status

Details of process creation

Process

Load code and static data

Establish stack

* |local variables, function calls
Init heap

 malloc, free
Allocate file descriptors

« STDIN _FILENO
« STDOUT FILENO
« STDERR FILENO

CPU

Process

e Process States

Descheduled

<~——— | Ready

Scheduled

/O: |n|t|a /I/O: done

Blocked

e Process States

Process

Time Processyg Process; Notes
1 Running Ready
2 Running Ready
3 Running Ready
! Running Ready Processp now done
5 - Running
6 - Running
4 — Running
8 — Running Process; now done
Time Processy Process; Notes
1 Running Ready
2 Running Ready
2 Running Ready Process initiates I/O
4 Blocked Running Processg is blocked,
5 Blocked Running so Process; runs
6 Blocked Running
7 Ready Running I/O done
8 Ready Running Process1 now done
9 Running =
10 Running — Processy now done

// the registers xv6 will save and restore
// to stop and subsequently restart a process

struct context {
int eip;
int esp;
int ebx;
int ecx;
int edx;
int esij;
int edi;
int ebp;
}i

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO,
RUNNARBLE, RUNNING,

SLEEPING,
ZOMBIE };

// the information xv6 tracks about each process
// including its register context and state

struct
char
uint
char

proc |
*xmem;
SZ;
rkstack;

enum proc_state state;

int pid;

struct proc *xparent;

void =xchan;

int killed;

struct file *ofile[NOFILE];
struct inode =*cwd;

struct context context;
struct trapframe *tf;

};

//
//
//
//
//
//
//
//
//
//
//
//
//
//

Start of process memory

Size of process memory
Bottom of kernel stack

for this process

Process state

Process ID

Parent process

If non—zero, sleeping on chan
If non—-zero, have been killed
Open files

Current directory

Switch here to run process
Trap frame for the

current interrupt

Process

 Virtualizing the CPU

- Low level mechanisims
« Context switch

- High level intelligence
« Scheduling policy

Process

e Low level mechanisims

- Direct Execution
e Just run a programm on CPU directly

OS Program

Create entry for process list
Allocate memory for program
Load program into memory
Set up stack with argc/argv
Clear registers
Execute call main()
Run main()
Execute return from main
Free memory of process
Remove from process list

Process

 Problems of direct execution

- No control
« Visit any memory address
 Open any file
« Directly play with hardwares (e.g. 1/O)

4 shift 4 X

| SEEM TO-HAVE LOST-CONTROL

Process

« Limited Direct Execution

- Kernel model and user model

- “restricted operations”
By the kernel

- When a thread need do restricted operations
e System call

Process

« Limited Direct Execution

 Need some hardware supports

- A bit in CPU identifies kernel/user mode
- “trap” Iinstruction
- “return-from-trap” instruction

- Save the regs before do the restricted
operation (kernel stack)

OS @ run
(kernel mode)

Hardware

Program
(user mode)

Run main()

éall system call
trap into OS

Process

e Switching between processes

- Cooperative approach
« OS trusts the process to yield CPU properly
- Incooperative approach

« OS revokes the control of CPU periodically
 Time interrupt
« Scheduler

OS @ boot
(kernel mode)

Hardware

initialize trap table

start interrupt timer

remember addresses of...
syscall handler
timer handler

start timer

interrupt CPU in X ms
OS @ run Hardware Program
(kernel mode) (user mode)
Process A

Handle the trap

Call switch () routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)

return-from-trap (into B)

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)

move to user mode
jump to B’s PC
Process B

Process

* Low-level mechanisims: summary

- Direct execution
- Limited direct execution
- Switch between processes

Process

 High level intelligence

- Schedulling policy

* First In, First Out

« Shortest job first

* Shortest time to complete first
« Round Roubin

Process

« Summary of CPU virtualization

- Low level mechanisims
* A little hardware support goes a long way
- Hige level mechanisims

Process

e Process API

- fork(), exec(), wait(), exit()

- Create, execute, wait and terminate a
process

- May be the strangest APl you've ever met

Process

 API
- fork()

* Create a new process
« Exactly copy the calling process

- The return code of fork() is different

« |n parent: fork() return the pid of the child
* In child: fork() return O

- Who will run first is not determined

Process

* API

- walit()
« Wait for child to finish his job
 The parent will not proceed until wait() return.

- walitpid()

Process

* API

- exec()
« Execute a different program in child process
- A group of system calls:

« execl, execv, execle, execve, execlp, execvp,
fexecv

Process

« Some Coding

- fork
- fork, walit

- fork, wait, execvp

Process

« What's happening behind fork()?

- The child get a “copy” of parent's data space,
stack, heap

« the system call: clone()
- “Copy-on-write”
 Not really copy the data, but share the data with
“read only” flag

 |f parent or child writes on a shared address, the
kernel make a copy of that piece of memory only
(usually a page)

Process

nat's happening behind fork()?
:i I es h a ri N g parent process table entry file table v-node table

file status ﬂagS v-node information

current file offset

— v_data
o fd fd file v-node pointer — i
flags pointer

fd 0: i-node information

Qi [4L . F s s e s s e
fd 2: current file size

* File offsets 1] [imode -

file status flags

current file offset

v-node pointer ——

v-node information

child process table entry

file status flags

current file offset | 00 | - - - - _ - _

fd file
flags pointer D D etk i
£d.0: — v-node pointer —| i vnode —
fd 1: i
fd 2:

v-node information

Figure 8.2 Sharing of open files between parent and child after fork

Process

« What's happening behind fork()?

- Other shared data:

 User ID, group ID...
Current working directory
Environment

Memory mapping
Resources limits

Process

« What's happening behind exit()?

- Close all fds, release all memory, ...

- Inform the exit status to the parent process,
which can be captured by wait()

Process

« What's happening behind wait()?

- The parent terminates first?
 The init process (PID=0)
- The child terminates first?

 The kernel keeps a small amount of information
for every terminating process

« Available when the parent calls wait()
- PID, termination status, the amount of CPU time
e zombies

Process

« What's happen behind wait()/waitpid()

- wait(): block the caller until a child process
terminates

- waitpid(): wait which child, and some other
options

Process

 What's happening behind exec()?

- Replace the current process with a new
program from disk

« Text, data, heap, stack
- Start from the main() of that program

CPU Memory

Process

 Process APl summary

- fork(): create a new process

- walt(): wait for a child

- exit(): destroy a process

- exec(): execute a programm in child

Project?2

* Implement your own shell

- Use fork, wait, execvp
- Also open, close, dup?

Project2 Detalls

e Basic shell

- Run your shell by: ./mysh
- It will print a prompt:

mysh>
- You can type some commands

mysh> Is

- Hit ENTER, the command will be executed

Project2 Detalls

e« Build-in Commands

- When “mysh” execute a command, it will
check wether it is a build-in or not.

- For build-in commands, you should involve
your implementation.
- They are:
o exit
e wait
* Cd
« pwd

Project2 Detalls

« Redirection
- Your shell should support redirection:

mysh> |Is -| > output

- The file “output” contain the result of “Is -|”

Project2 Detalls

« Background Jobs

- Your shell should be able to run jobs in the
background

mysh> |s &

— Your shell will continue to work rather than
wait.

Project2 Detalls

« Batch mode

- Your shell should be able to run in batch
mode

Jmysh batch file

- Your shell will run the commands in batch _file
- E.g, “batch file” contains

s -

cat batch_file

Project2 Detalls

 Bonus: Pipe

- The pipe connect the input/output of different
commands

mysh> grep “hello” FILE | wc -

- How many lines have “hello”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

