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Unix / *nix

● What
– A family of operating systems
– Widely used 
– A cool thing
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● Smartphone
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● Web Server
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Unix / *nix

● As your daily OS (work with it)
– Coding
– Web
– Text processing 
– Multimedia 
– Shells

● a working space

● It’s “Free”
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Unix / *nix

● For studying general OS concepts
– Open source
– High quality documents (freely available)
– Community



  

Unix / *nix

● History
– Multics: mid-1960, MIT+GE+Bell Labs

● “Multiplexed Information and Computing 
Service”,allowing multiple users to access a 
mainframe simultaneously

● Segmentation,  Dynamic linking
● Complexity
● Failed



  

Unix / *nix

● History
– Unics: 1969, Ken Thompson, Dennis Ritchie 

● A game called Space Travel
● Smaller than Multics
● Using PDP-7 assemble language
● Hierarchical file system, process, device files, 

command-line interpreter
● Single task

– “Uniplexed Information and Computing Service”

– Core concepts of Unix



  

Unix / *nix

● History
– C programming language, 1972, Dennis 

Ritchie
● Rewrite unix for PDP-11
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Unix

● History
– GNU Project, 1983, Richard Stallman

● GNU: GNU is Not Unix
● Unix-like
● Free software, contain no Unix code
● GNU software

– gcc (GNU C compiler)
– gdb (GNU debugger)
– Emacs

● Free Software Foundation
● Free Software License 

– GNU General Public License (GPL)



  

Unix

● Unix standardization
– ISO C 

● Standard for the C programming language

– POSIX
● IEEE Portable Operating System Interface

– SUS
● Single Unix Specification



  

Unix

● Unix implementations
– Unix v6, v7 (Bell lab)
– FreeBSD (U.C. Berkeley)
– Sun OS/Solaris (Sun)
– System V (AT&T)
– OS X (Apple)
– Linux, 1991, Linus Torvalds

● A (free) kernel with support of GNU packages
● distributions

– Ubuntu, Debian, CentOS, Federa, Gentoo, ArchLinux
– Android



  



  

Operating System

● OS in the eyes of users
– Can I run XX software?

● OS in the eyes of CS students
– Process, thread, paging, file system, …
– Can I write XX software on it to make some 

money/change the world?



  

Unix Operating System

Hardware

Kernel

Library (Glibc)

Shell

Applications



  

Unix Operating System

● Login
– User name
– Password

● File and Directory
– Hierarchical structure

● /home/ybwu/Documents/myfile

– Root directory: “/”



  

Unix Operating System

● Input and Output 
– Human-machine interaction
– Keyboards
– Monitors

● Files!



  

Unix Operating System

● “Everything is a file”
– Documents
– Directories
– Hard-drives
– Keyboards
– Printers
– /proc

● The same API: open, read, write, close



  

Unix Operating System

● File Input and File Output
– File operations
– File descriptor 

● unsigned int
● Allocate when open a file
● Revoke when close a file
● read() / write()

int fd = open(“foo”, “r”);
read(fd, buffer, size);
close(fd);  



  

Unix Operating System

● File Input and File Output 
– Standard input, output, error

● 3 file descriptors
● Automatic allocated for every process

read(STDIN_FILENO, buffer, size);
write(STDOUT_FILENO, buffer, size); 
write(STDERR_FILENO, buffer, size); 



  

Unix Operating System

● Process
– Process ID (PID)
– Process status: ready, run, sleep

Running Ready

Sleep

IO Interrupt IO Finish

descheduled

scheduled



  

Unix Operating System

● Thread
– Processes that share same address spaces, 

file descriptors, ...
– Kernel thread / User thread



  

Unix Operating System

● Communications of processes
● Example: Signal

– Tell a process that something has happened
– Example

● pressing Ctrl+C  generate a signal to terminate 
current process



  

Unix Operating System

● Memory management
– Segmentation
– Paging

● File system
– Inode



  

Unix Operating System

● Handling Errors
– Not only report error, also provide detail info.
– Variable: errno
– Function: void perror(char* msg);

● Print msg
● Print error message string corresponding to the 

current errno



  

Unix Operating System

● System Call and Library Function
– System Call:

● Provided by kernel
● Doing restricted operations with hardware
● User mode, kernel mode

– Library Function
● Provided by user mode software developer
● Some functions reused many times



  

Unix Operating System
#include <stdio.h>
void foo()             
{                            

  printf(“bar\n”);
}                           

printf()
fprintf()
malloc()

atoi()

Kernel

write(), reads(), 
mmap()

User application

Library Functions
(Glibc)

System Calls



  

Unix Operating System

● Summary
– terms

● File descriptor, stdin, stdout, stderr
● Process, thread, Pid
● errno, perror(),
● Signal: Ctrl + C

– System Call
– Library Functions 
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Course Overview

● Objectives
– Reviewing core concepts of OS
– Having some fun on coding

● How
– Reading
– Coding
– Presentation



  

Course Overview

● In this semester:
– 6 projects
– 3 of them need oral presentations
– Course website: 

http://ybwu.org/ecnu-oslabs/index.html



  

Course Overview

● Project 0
– To get familiar with Linux
– Shell command

● cd, ls, mkdir, rm, ...

– Dev environment
● gcc, gdb



  

Course Overview

● Project 1
– Sorting
– Warm up with Linux programming
– I/O system call



  

Course Overview

● Project 2
– Implement your own shell

● Linux process API
● Redirect
● Pipe



  

Course Overview

● Project 3
– Implement your own malloc() / free()

● Dynamic memory allocation
● The pointer of C programming language



  

Course Overview

● Project 4
– Implement your own lock

● Introduction to concurrency
● Linux pthread API
● Thread safe data structures 



  

Course Overview

● Project 5
– Implement a file defragmentor

● Reorganize file blocks
● basic concepts of file system



  

Course Overview

● Projects
– P0, P1, P2: single
– P3, P4, P5: groups of three.

● Grading
– The quality of your projects
– Presentation

● General advice
– Start early
– Build your projects incrementally  



  

Course Overview

● How
– Reading
– Coding
– Presentation



  

Course Overview

● Reading is important
– You may spend 50% of your time on reading 

materials.



  

Course Overview

● Reading
– The main text book: 

● Operating Systems: Three Easy Pieces, by Remzi 
H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau

● http://pages.cs.wisc.edu/~remzi/OSTEP/

http://pages.cs.wisc.edu/~remzi/OSTEP/


  

Course Overview

● Reading
– Reference for Unix programming:

● Advanced Programming in the UNIX Environment, by W. Richard 
Stevens, Stephen A. Rago

– Reference for C programming:
● The C Programming Language, by Brian W Kernighan, Dennis M. 

Ritchie

– Reference for Linux kernel:
● Linux Kernel Development, by Robert Love



  

Course Overview

● Reading
– RTFM
– “Read The Manual”



  

Course Overview

● Coding
– Using C, no C++, no Java ... 
– Compile with gcc
– Debug with gdb
– Maybe without IDE

● Make your code 
– Well structured
– Clean
– Easy to read 
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Course Overview

● Presentation
– you will present one of your projects
– About

● What have you done
● How to accomplish them
● Your favorite parts
● What did you learn  
● ... 



  

Operating System Labs

9.11 18 25 10.2 9 16 23 30 11.6 13 20 27 12.4 11 18 25 1.1

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17

P0 L

P1 L

P2 L L

P3 L

P4 L L

P5 L

P3 oral P4 oral P5 oral



  

Course Overview

● Policies
– Plagiarism policy
– Late policy 



  

Course Overview

● Plagiarism policy
– What is OK

● Discuss programming specifications 
– What is the meaning of “redirection”

● Discuss reading materials
– What are the differences between exec functions?

● Discuss implementation strategies
– How to make the lock faster?



  

Course Overview

● Plagiarism policy
– What is NOT OK

● Copy codes/docs from someone 
● Beg someone to write a copy for you



  

Course Overview

● If we discover any improper code sharing
– ALL participants will loss ALL credits of the 

project

● No Cheating!



  

Course Overview

● Late policy
– For P0, P1, P2

● Late handins are NOT accepted.

– For P3, P4, P5
● Your group will have 3 “late days”.
● You need to email TA at least 1 hour before the 

dateline.   
● If all your 3 “late days” are used, late handins will 

not be accepted.

● Start Early!



  

Course Overview

● Contact
– Instructor: 

● 吴苑斌 , ybwu@cs.ecnu.edu.cn
● 911 Science Building B 

– TA:
● 韦阳 , weiyang@godweiyang.com
● 黄子寅 , huangz1yin@163.com 

● Office hour
– TBD

mailto:ybwu@cs.ecnu.edu.cn


  

Course Overview

● Project 0 due
– 21:00 Sep. 24th

● Submissions
– Class 1: oslab2018_class1@163.com
– Class 2: oslab2018_class2@163.com
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