

Operating System Labs

Yuanbin Wu
cs@ecnu

Operating System Labs

● Introduction to Unix (*nix)
● Course Overview

Operating System Labs

● Introduction to Unix (*nix)
● Course Overview

Unix / *nix

● What
– A family of operating systems
– Widely used
– A cool thing

Unix / *nix
● Smartphone

Unix / *nix

● Web Server

Unix / *nix

Unix / *nix

● As your daily OS (work with it)
– Coding
– Web
– Text processing
– Multimedia
– Shells

● a working space

● It’s “Free”

Unix / *nix

Unix / *nix

● For studying general OS concepts
– Open source
– High quality documents (freely available)
– Community

Unix / *nix

● History
– Multics: mid-1960, MIT+GE+Bell Labs

● “Multiplexed Information and Computing
Service”,allowing multiple users to access a
mainframe simultaneously

● Segmentation, Dynamic linking
● Complexity
● Failed

Unix / *nix

● History
– Unics: 1969, Ken Thompson, Dennis Ritchie

● A game called Space Travel
● Smaller than Multics
● Using PDP-7 assemble language
● Hierarchical file system, process, device files,

command-line interpreter
● Single task

– “Uniplexed Information and Computing Service”

– Core concepts of Unix

Unix / *nix

● History
– C programming language, 1972, Dennis

Ritchie
● Rewrite unix for PDP-11

Unix / *nix

Unix

● History
– GNU Project, 1983, Richard Stallman

● GNU: GNU is Not Unix
● Unix-like
● Free software, contain no Unix code
● GNU software

– gcc (GNU C compiler)
– gdb (GNU debugger)
– Emacs

● Free Software Foundation
● Free Software License

– GNU General Public License (GPL)

Unix

● Unix standardization
– ISO C

● Standard for the C programming language

– POSIX
● IEEE Portable Operating System Interface

– SUS
● Single Unix Specification

Unix

● Unix implementations
– Unix v6, v7 (Bell lab)
– FreeBSD (U.C. Berkeley)
– Sun OS/Solaris (Sun)
– System V (AT&T)
– OS X (Apple)
– Linux, 1991, Linus Torvalds

● A (free) kernel with support of GNU packages
● distributions

– Ubuntu, Debian, CentOS, Federa, Gentoo, ArchLinux
– Android

Operating System

● OS in the eyes of users
– Can I run XX software?

● OS in the eyes of CS students
– Process, thread, paging, file system, …
– Can I write XX software on it to make some

money/change the world?

Unix Operating System

Hardware

Kernel

Library (Glibc)

Shell

Applications

Unix Operating System

● Login
– User name
– Password

● File and Directory
– Hierarchical structure

● /home/ybwu/Documents/myfile

– Root directory: “/”

Unix Operating System

● Input and Output
– Human-machine interaction
– Keyboards
– Monitors

● Files!

Unix Operating System

● “Everything is a file”
– Documents
– Directories
– Hard-drives
– Keyboards
– Printers
– /proc

● The same API: open, read, write, close

Unix Operating System

● File Input and File Output
– File operations
– File descriptor

● unsigned int
● Allocate when open a file
● Revoke when close a file
● read() / write()

int fd = open(“foo”, “r”);
read(fd, buffer, size);
close(fd);

Unix Operating System

● File Input and File Output
– Standard input, output, error

● 3 file descriptors
● Automatic allocated for every process

read(STDIN_FILENO, buffer, size);
write(STDOUT_FILENO, buffer, size);
write(STDERR_FILENO, buffer, size);

Unix Operating System

● Process
– Process ID (PID)
– Process status: ready, run, sleep

Running Ready

Sleep

IO Interrupt IO Finish

descheduled

scheduled

Unix Operating System

● Thread
– Processes that share same address spaces,

file descriptors, ...
– Kernel thread / User thread

Unix Operating System

● Communications of processes
● Example: Signal

– Tell a process that something has happened
– Example

● pressing Ctrl+C generate a signal to terminate
current process

Unix Operating System

● Memory management
– Segmentation
– Paging

● File system
– Inode

Unix Operating System

● Handling Errors
– Not only report error, also provide detail info.
– Variable: errno
– Function: void perror(char* msg);

● Print msg
● Print error message string corresponding to the

current errno

Unix Operating System

● System Call and Library Function
– System Call:

● Provided by kernel
● Doing restricted operations with hardware
● User mode, kernel mode

– Library Function
● Provided by user mode software developer
● Some functions reused many times

Unix Operating System
#include <stdio.h>
void foo()
{

 printf(“bar\n”);
}

printf()
fprintf()
malloc()

atoi()

Kernel

write(), reads(),
mmap()

User application

Library Functions
(Glibc)

System Calls

Unix Operating System

● Summary
– terms

● File descriptor, stdin, stdout, stderr
● Process, thread, Pid
● errno, perror(),
● Signal: Ctrl + C

– System Call
– Library Functions

Operating System Labs

● Introduction to *nix
● Course Overview

Course Overview

● Objectives
– Reviewing core concepts of OS
– Having some fun on coding

● How
– Reading
– Coding
– Presentation

Course Overview

● In this semester:
– 6 projects
– 3 of them need oral presentations
– Course website:

http://ybwu.org/ecnu-oslabs/index.html

Course Overview

● Project 0
– To get familiar with Linux
– Shell command

● cd, ls, mkdir, rm, ...

– Dev environment
● gcc, gdb

Course Overview

● Project 1
– Sorting
– Warm up with Linux programming
– I/O system call

Course Overview

● Project 2
– Implement your own shell

● Linux process API
● Redirect
● Pipe

Course Overview

● Project 3
– Implement your own malloc() / free()

● Dynamic memory allocation
● The pointer of C programming language

Course Overview

● Project 4
– Implement your own lock

● Introduction to concurrency
● Linux pthread API
● Thread safe data structures

Course Overview

● Project 5
– Implement a file defragmentor

● Reorganize file blocks
● basic concepts of file system

Course Overview

● Projects
– P0, P1, P2: single
– P3, P4, P5: groups of three.

● Grading
– The quality of your projects
– Presentation

● General advice
– Start early
– Build your projects incrementally

Course Overview

● How
– Reading
– Coding
– Presentation

Course Overview

● Reading is important
– You may spend 50% of your time on reading

materials.

Course Overview

● Reading
– The main text book:

● Operating Systems: Three Easy Pieces, by Remzi
H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau

● http://pages.cs.wisc.edu/~remzi/OSTEP/

http://pages.cs.wisc.edu/~remzi/OSTEP/

Course Overview

● Reading
– Reference for Unix programming:

● Advanced Programming in the UNIX Environment, by W. Richard
Stevens, Stephen A. Rago

– Reference for C programming:
● The C Programming Language, by Brian W Kernighan, Dennis M.

Ritchie

– Reference for Linux kernel:
● Linux Kernel Development, by Robert Love

Course Overview

● Reading
– RTFM
– “Read The Manual”

Course Overview

● Coding
– Using C, no C++, no Java ...
– Compile with gcc
– Debug with gdb
– Maybe without IDE

● Make your code
– Well structured
– Clean
– Easy to read

Course Overview

Course Overview

● Presentation
– you will present one of your projects
– About

● What have you done
● How to accomplish them
● Your favorite parts
● What did you learn
● ...

Operating System Labs

9.11 18 25 10.2 9 16 23 30 11.6 13 20 27 12.4 11 18 25 1.1

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17

P0 L

P1 L

P2 L L

P3 L

P4 L L

P5 L

P3 oral P4 oral P5 oral

Course Overview

● Policies
– Plagiarism policy
– Late policy

Course Overview

● Plagiarism policy
– What is OK

● Discuss programming specifications
– What is the meaning of “redirection”

● Discuss reading materials
– What are the differences between exec functions?

● Discuss implementation strategies
– How to make the lock faster?

Course Overview

● Plagiarism policy
– What is NOT OK

● Copy codes/docs from someone
● Beg someone to write a copy for you

Course Overview

● If we discover any improper code sharing
– ALL participants will loss ALL credits of the

project

● No Cheating!

Course Overview

● Late policy
– For P0, P1, P2

● Late handins are NOT accepted.

– For P3, P4, P5
● Your group will have 3 “late days”.
● You need to email TA at least 1 hour before the

dateline.
● If all your 3 “late days” are used, late handins will

not be accepted.

● Start Early!

Course Overview

● Contact
– Instructor:

● 吴苑斌 , ybwu@cs.ecnu.edu.cn
● 911 Science Building B

– TA:
● 韦阳 , weiyang@godweiyang.com
● 黄子寅 , huangz1yin@163.com

● Office hour
– TBD

mailto:ybwu@cs.ecnu.edu.cn

Course Overview

● Project 0 due
– 21:00 Sep. 24th

● Submissions
– Class 1: oslab2018_class1@163.com
– Class 2: oslab2018_class2@163.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

