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I/O System Calls

● 5 basic system calls
– open(), read(), write(), lseek(), close()

● I/O without buffering
● File sharing 

– understand file descriptor
– dup() dup2()

● Other
– fcntl(), sync(), fsync(), ioctl() 



  

File Descriptor

● File descriptor
– Allocated when open a file
– “ID” of the file in the process (unsigned int)

● Default 
– 0 (STDIN_FILENO): standard input
– 1 (STDOUT_FILENO): standard output
– 2 (STDERR_FILENO): standard error



  

I/O System Calls

● Open files: 

● Return value
– Success: file descriptor
– Failed: -1

● o_flag:
– O_RDONLY, O_WRONLY, O_RWWR
– Options:

● O_APPEND, O_CREAT, O_TRUNC, ...

# include <fcntl.h>

int open(const char *pathname, int o_flag, …  );
// man 2 open



  

I/O System Calls

● Open files
– File descriptors: the smallest one available
– Examples int main (int argc, char **argv)

{
int fd = open(“foo”, O_RDONLY);
printf(“%d”, fd);

}

int main (int argc, char **argv)
{

close(0);
int fd = open(“foo”, O_RDONLY);
printf(“%d”, fd);

}



  

I/O System Calls

● Open files
– STDIN_FILENO, STDOUT_FILENO, 

STDERR_FILENO
– opened by the OS when creating a process



  

I/O System Calls

● Close files

● Return
– Success: 0
– Failed: -1

# include <unistd.h>

int close(int filedes);



  

I/O System Calls

● File Position

● “Current file offset”:
– An offset (in byte) to the beginning of the file

● whence:
– SEEK_SET, SEEK_CUR, SEEK_END   

# include <unistd.h>

off_t lseek(int filedes, off_t offset, int whence);



  

I/O System Calls
● Read files

● Start reading at “file offset”
● Return:

– Success: number of bytes read (0, if EOF)
– Failed: -1

● Return < size
– EOF
– Read from terminal (stdin), one line
– ...

# include <unistd.h>

int read(int filedes, void *buf, size_t nbytes);



  

I/O System Calls

● Write files

Return:
– Success: number of bytes write
– Failed: -1

# include <unistd.h>

int write(int filedes, const void *buf, size_t nbytes);



  

An Example: I/O and Buffers

● I/O without buffer
– No (user space) buffer

● read(), write(): system calls 
● Do have buffer in kernel space (by file system)

– Let's do some coding 

– Buffering do matter!
● printf, scanf in standard I/O library are buffered 



  

Revisit File Descriptors
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Process A 

1. Each process has its own array of “struct file*”
2. Each file associates with only one “struct inode”
3. The “inode number” is a low-level id of a file 



  

struct file {
  mode_t f_mode;
  loff_t f_pos;
  unsigned short f_flags;
  unsigned short f_count;
  unsigned long f_reada, f_ramax, f_raend, f_ralen, f_rawin;
  struct file *f_next, *f_prev;
  int f_owner;        
  struct inode * f_inode;
  struct file_operations * f_op;
  unsigned long f_version;
  void *private_data;  
};

struct files_struct {
  int count;
  fd_set close_on_exec;
  fd_set open_fds;
  struct file * fd[NR_OPEN];
};

struct ext2_inode {
        __u16   i_mode;         /* File type and access rights */
        __u16   i_uid;          /* Low 16 bits of Owner Uid */
        __u32   i_size;         /* Size in bytes */
        __u32   i_atime;        /* Access time */
        __u32   i_ctime;        /* Creation time */
        __u32   i_mtime;        /* Modification time */
        __u32   i_dtime;        /* Deletion Time */
        __u16   i_gid;          /* Low 16 bits of Group Id */
        __u16   i_links_count;  /* Links count */
        __u32   i_blocks;       /* Blocks count */
        __u32   i_flags;        /* File flags */

...
__u32   i_block[EXT2_N_BLOCKS];  /* Pointers to blocks */
...

};



  

Quiz

● What happen when we open a file with a 
text editor?

● What happen when we open a file with 
two different text editors?
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Process B

Process A

A, B open the same file



  

File Sharing

● Simple? … emmm … 
● Example: how to implement

open(“file”, O_WRONLY | O_APPEND)

● Two process A, B run the same code, what 
will happen?

if (lseek(fd, 0, SEEK_END) < 0)
perror(“lseek”);

if (write(fd, buf, 100) < 100)
     perro(“write”);

Atomic operations 



  

File Sharing

● Duplicate a file descriptor

● set “fd2” point to the same file of “fd”
● Return

– Success: fd
– Failed: -1 

# include <unistd.h>

int dup2(int fd, int fd2);
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Process A

// if fd 0 is open, close it first
dup2(3, 0);

 

1. a file with multiple file descriptors
2. I/O redirection



  

I/O System Calls

● Other system calls
– sync() / fsync(): 

● “delay write”
● Flush kernel buffer

– fcntl(): change file (opened) attributes
– ioctl(): other methods 



  

I/O System Calls

● Summary
– File descriptor
– open, close, read, write, lseek, dup
– File sharing



  

Operating System Labs

● Manipulate I/O
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● File descriptor
● No buffering

– Standard library
● FILE object
● Buffering



  

Standard I/O Library

● #include <stdio.h>
– FILE object (structure)
– Buffering
– Formatted I/O



  

System Calls vs Library 
Functions

● Recall: #include <stdio.h>
void foo()             
{                            

  printf(“bar\n”);
}                           

printf()
fprintf()
malloc()

atoi()

Kernel

write(), reads(), 
mmap()

User application

Library Functions
(Glibc)

System Calls



  

Standard I/O Library

● Stream and FILE object 
– A wrapper of file descriptor
– More information: 

● buffer
● error info
● single-byte or multi-byte

# include <fcntl.h>

int main (int argc, char **argv)
{

 int fd = open(“foo”, O_RDONLY);
}

# include <stdio.h>

int main (int argc, char **argv)
{

 FILE* fp = fopen(“foo”, “r”);
}



  

FILE Object

● Opaque pointer 
– The implementation is hidden
– Access the struct member through functions

● Operations on FILE object
● Get file descriptor:  fileno(FILE* f)
● Set buffer: setbuf(FILE* f, char* buf) 



  

Standard I/O Library

● Buffering
– stdio provide a “standard I/O buffer” (user space)

● Three types of buffering
– Full buffered

● Performs I/O when the buffer is full

– Line buffered
● Performs I/O when encounter a newline 

– Unbuffered
● Performs I/O immediately, no buffer



  

Standard I/O Library

● Three types of buffering: cases
– Standard error is unbuffered
– A stream is line buffered if it refers to 

terminal device, otherwise full buffered

● Write “standard I/O buffer” to disc:

# include <stdio.h>

int fflush(FILE *fp);



  

Standard I/O Library

● Open/Close streams

● Type: “r”, “w”, “a”, “r+”.. .
● Return

– Failed: NULL

# include <stdio.h>

FILE *fopen(const char* path, const char * type);
FILE *fdopen(int fd, const char * type);

int fclose(FILE* fp);



  

Standard I/O Library

● Character-at-a-time I/O

# include <stdio.h>

int getc(FILE *fp);
int fgetc(FILE *fp);

int putc(FILE *fp);
int fputc(FILE *fp);



  

Standard I/O Library

● Line-at-a-time I/O

# include <stdio.h>

char* fgets(char *buf, int n, FILE *fp);
char* gets(char *buf);       // should never be used

int fputs(char *str, FILE *fp);
int puts(char *str);



  

Standard I/O Library

● Direct I/O

# include <stdio.h>

size_t fread(void *ptr, size_t size, size_t, nobj, FILE *fp);
size_t fwrite(void *ptr, size_t size, size_t, nobj, FILE *fp);



  

Standard I/O Library

● Standard I/O efficiency
– Recall: buffering in system calls
– Let's do some coding again



  

Standard I/O Library

● Formatted I/O
– printf, fprintf, scanf



  

Standard I/O Library

● Summary
● #include <stdio.h>

– FILE object (structure)
– Buffering
– Formatted I/O



  

Introduction of I/O Operations

● Summary
– System call

● File descriptor
● No buffering

– Standard library
● FILE object
● Buffering



  

Project 1

● Sorting



  

Announcement

● Project 1 due
– 21:00, Oct. 8
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