

Operating System Labs

Yuanbin Wu
cs@ecnu

Announcement

● Project 1 due
– 21:00, Oct. 8

Operating System Labs

● Introduction of I/O operations
● Project 1

– Sorting

Operating System Labs

● Manipulate I/O
– System call

● File descriptor
● No buffering

– Standard library
● FILE object
● Buffering

Operating System Labs

● Manipulate I/O
– System call

● File descriptor

– Standard library
● FILE object
● Buffer/non-buffer

I/O System Calls

● 5 basic system calls
– open(), read(), write(), lseek(), close()

● I/O without buffering
● File sharing

– understand file descriptor
– dup() dup2()

● Other
– fcntl(), sync(), fsync(), ioctl()

File Descriptor

● File descriptor
– Allocated when open a file
– “ID” of the file in the process (unsigned int)

● Default
– 0 (STDIN_FILENO): standard input
– 1 (STDOUT_FILENO): standard output
– 2 (STDERR_FILENO): standard error

I/O System Calls

● Open files:

● Return value
– Success: file descriptor
– Failed: -1

● o_flag:
– O_RDONLY, O_WRONLY, O_RWWR
– Options:

● O_APPEND, O_CREAT, O_TRUNC, ...

include <fcntl.h>

int open(const char *pathname, int o_flag, …);
// man 2 open

I/O System Calls

● Open files
– File descriptors: the smallest one available
– Examples int main (int argc, char **argv)

{
int fd = open(“foo”, O_RDONLY);
printf(“%d”, fd);

}

int main (int argc, char **argv)
{

close(0);
int fd = open(“foo”, O_RDONLY);
printf(“%d”, fd);

}

I/O System Calls

● Open files
– STDIN_FILENO, STDOUT_FILENO,

STDERR_FILENO
– opened by the OS when creating a process

I/O System Calls

● Close files

● Return
– Success: 0
– Failed: -1

include <unistd.h>

int close(int filedes);

I/O System Calls

● File Position

● “Current file offset”:
– An offset (in byte) to the beginning of the file

● whence:
– SEEK_SET, SEEK_CUR, SEEK_END

include <unistd.h>

off_t lseek(int filedes, off_t offset, int whence);

I/O System Calls
● Read files

● Start reading at “file offset”
● Return:

– Success: number of bytes read (0, if EOF)
– Failed: -1

● Return < size
– EOF
– Read from terminal (stdin), one line
– ...

include <unistd.h>

int read(int filedes, void *buf, size_t nbytes);

I/O System Calls

● Write files

Return:
– Success: number of bytes write
– Failed: -1

include <unistd.h>

int write(int filedes, const void *buf, size_t nbytes);

An Example: I/O and Buffers

● I/O without buffer
– No (user space) buffer

● read(), write(): system calls
● Do have buffer in kernel space (by file system)

– Let's do some coding

– Buffering do matter!
● printf, scanf in standard I/O library are buffered

Revisit File Descriptors

fd file pointer

0
1
2

3

4

.

file
file status
current offset

inode

file
file status

current offset

inode

inode
file size

access time

data block

inode
file size

access time

data block

Process A

1. Each process has its own array of “struct file*”
2. Each file associates with only one “struct inode”
3. The “inode number” is a low-level id of a file

struct file {
 mode_t f_mode;
 loff_t f_pos;
 unsigned short f_flags;
 unsigned short f_count;
 unsigned long f_reada, f_ramax, f_raend, f_ralen, f_rawin;
 struct file *f_next, *f_prev;
 int f_owner;
 struct inode * f_inode;
 struct file_operations * f_op;
 unsigned long f_version;
 void *private_data;
};

struct files_struct {
 int count;
 fd_set close_on_exec;
 fd_set open_fds;
 struct file * fd[NR_OPEN];
};

struct ext2_inode {
 __u16 i_mode; /* File type and access rights */
 __u16 i_uid; /* Low 16 bits of Owner Uid */
 __u32 i_size; /* Size in bytes */
 __u32 i_atime; /* Access time */
 __u32 i_ctime; /* Creation time */
 __u32 i_mtime; /* Modification time */
 __u32 i_dtime; /* Deletion Time */
 __u16 i_gid; /* Low 16 bits of Group Id */
 __u16 i_links_count; /* Links count */
 __u32 i_blocks; /* Blocks count */
 __u32 i_flags; /* File flags */

...
__u32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

Quiz

● What happen when we open a file with a
text editor?

● What happen when we open a file with
two different text editors?

fd file pointer

0
1
2

3

4

.

file
file status
current offset

inode

file
file status

current offset

inode

inode
file size

access time

data block

fd file pointer

0
1
2

3

4

.

Process B

Process A

A, B open the same file

File Sharing

● Simple? … emmm …
● Example: how to implement

open(“file”, O_WRONLY | O_APPEND)

● Two process A, B run the same code, what
will happen?

if (lseek(fd, 0, SEEK_END) < 0)
perror(“lseek”);

if (write(fd, buf, 100) < 100)
 perro(“write”);

Atomic operations

File Sharing

● Duplicate a file descriptor

● set “fd2” point to the same file of “fd”
● Return

– Success: fd
– Failed: -1

include <unistd.h>

int dup2(int fd, int fd2);

fd file pointer

0 NULL
1
2

3

4

.

file
file status
current offset

inode

inode
file size

access time

data block

Process A

// if fd 0 is open, close it first
dup2(3, 0);

1. a file with multiple file descriptors
2. I/O redirection

I/O System Calls

● Other system calls
– sync() / fsync():

● “delay write”
● Flush kernel buffer

– fcntl(): change file (opened) attributes
– ioctl(): other methods

I/O System Calls

● Summary
– File descriptor
– open, close, read, write, lseek, dup
– File sharing

Operating System Labs

● Manipulate I/O
– System call

● File descriptor
● No buffering

– Standard library
● FILE object
● Buffering

Standard I/O Library

● #include <stdio.h>
– FILE object (structure)
– Buffering
– Formatted I/O

System Calls vs Library
Functions

● Recall: #include <stdio.h>
void foo()
{

 printf(“bar\n”);
}

printf()
fprintf()
malloc()

atoi()

Kernel

write(), reads(),
mmap()

User application

Library Functions
(Glibc)

System Calls

Standard I/O Library

● Stream and FILE object
– A wrapper of file descriptor
– More information:

● buffer
● error info
● single-byte or multi-byte

include <fcntl.h>

int main (int argc, char **argv)
{

 int fd = open(“foo”, O_RDONLY);
}

include <stdio.h>

int main (int argc, char **argv)
{

 FILE* fp = fopen(“foo”, “r”);
}

FILE Object

● Opaque pointer
– The implementation is hidden
– Access the struct member through functions

● Operations on FILE object
● Get file descriptor: fileno(FILE* f)
● Set buffer: setbuf(FILE* f, char* buf)

Standard I/O Library

● Buffering
– stdio provide a “standard I/O buffer” (user space)

● Three types of buffering
– Full buffered

● Performs I/O when the buffer is full

– Line buffered
● Performs I/O when encounter a newline

– Unbuffered
● Performs I/O immediately, no buffer

Standard I/O Library

● Three types of buffering: cases
– Standard error is unbuffered
– A stream is line buffered if it refers to

terminal device, otherwise full buffered

● Write “standard I/O buffer” to disc:

include <stdio.h>

int fflush(FILE *fp);

Standard I/O Library

● Open/Close streams

● Type: “r”, “w”, “a”, “r+”.. .
● Return

– Failed: NULL

include <stdio.h>

FILE *fopen(const char* path, const char * type);
FILE *fdopen(int fd, const char * type);

int fclose(FILE* fp);

Standard I/O Library

● Character-at-a-time I/O

include <stdio.h>

int getc(FILE *fp);
int fgetc(FILE *fp);

int putc(FILE *fp);
int fputc(FILE *fp);

Standard I/O Library

● Line-at-a-time I/O

include <stdio.h>

char* fgets(char *buf, int n, FILE *fp);
char* gets(char *buf); // should never be used

int fputs(char *str, FILE *fp);
int puts(char *str);

Standard I/O Library

● Direct I/O

include <stdio.h>

size_t fread(void *ptr, size_t size, size_t, nobj, FILE *fp);
size_t fwrite(void *ptr, size_t size, size_t, nobj, FILE *fp);

Standard I/O Library

● Standard I/O efficiency
– Recall: buffering in system calls
– Let's do some coding again

Standard I/O Library

● Formatted I/O
– printf, fprintf, scanf

Standard I/O Library

● Summary
● #include <stdio.h>

– FILE object (structure)
– Buffering
– Formatted I/O

Introduction of I/O Operations

● Summary
– System call

● File descriptor
● No buffering

– Standard library
● FILE object
● Buffering

Project 1

● Sorting

Announcement

● Project 1 due
– 21:00, Oct. 8

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

