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● Project 1 due
– 21:00 Oct. 6 



  

Operating System Labs

● The abstraction of process
● CPU virtualization

– Low level and high level mechanisms
● Process API 
● Project 1a



  

The Abstraction of Process

● Process
– Running programs

● What does a process consist of?
– CPU

● Program Counter (PC)
● Stack Pointer / Frame Pointer

– Memory
● Address space

– Disk
● Set of file descriptors



  

The Abstraction of Process

● proc file system
– “Everything is file”
– Example

● cat /proc/<PID>/status
● cat /proc/<PID>/maps
● cat /proc/<PID>/fd
● cat /proc/<PID>/io

– Provide a method of communication between  kernel 
space and user space

● ps command



  

The Abstraction of Process

● Operations on a Process 
– Create
– Destroy
– Wait
– Miscellaneous Control
– Get status



  

The Abstraction of Process

● Example: process creation
– Load code and static data
– Establish stack 

● local variables, function calls

– Init heap 
● malloc, free

– Allocate file descriptors
● STDIN_FILENO
● STDOUT_FILENO 
● STDERR_FILENO



  

The Abstraction of Process

● Process States



  

The Abstraction of Process

● Process States



  

The Abstraction of Process

● Data structures



  



  

CPU Virtualization

● What
– Provide the illusion of many CPUs

● Why
– Multi-task

● How
– Time sharing



  

CPU Virtualization

● Mechanisms
– Low level mechanisms

● Context switch

– High level intelligence
● Scheduling policy



  

CPU Virtualization

● Low level mechanisms
– Direct Execution

● Just run a program on CPU directly



  

Direct Execution

● Problems of direct execution
– Visit any memory address
– Open any file
– Directly play with hardwares (e.g. I/O)

Lost control



  

Limited Direct Execution

● Limited Direct Execution
– Kernel model and user model
– “restricted operations”

● By OS

– When a thread needs “restricted operations”
● System call



  

Limited Direct Execution

● User mode
– The behavior of the code is restricted

● Kernel mode
– The code can do what it likes to do

● Issue I/O, executing all types of instructions,...

● How to switch?
– System call



  

System Call

● Hardware supports on system call
– A bit in CPU identifies kernel/user mode
– “trap” instruction
– “return-from-trap” instruction
– Save the registers before do the restricted 

operation (kernel stack)



  



  

Limited Direct Execution

● Switching between processes
– Cooperative approach

● OS trusts the process to yield CPU properly

– Non-cooperative approach
● OS revokes the control of CPU periodically
● Time interrupt
● Scheduler  



  



  

Limited Direct Execution

● Low-level mechanisms: summary
– Direct execution
– Limited direct execution
– Switch between processes



  

Scheduling Policy

● High level intelligence
– Scheduling policy

● First In, First Out
● Shortest job first
● Shortest time to complete first
● Round Roubin



  

CPU virtualization

● Summary of CPU virtualization
– Low level mechanisms

● A little hardware support goes a long way

– High level mechanisms



  

Process API

● Process API
– fork(), exec(), wait(), exit()
– Create, execute, wait and terminate a 

process
– May be the strangest API you've ever met



  

Process API

● fork()
– Create a new process
– Exactly copy the calling process

● The return code of fork() is different
– In parent: fork() return the pid of the child
– In child: fork() return 0

● Who will run first is not determined



  

Process API

● wait()
– Wait for child to finish his job
– The parent will not proceed until wait() 

return.
● waitpid()



  

Process API

● exec()
– Execute a different program in child process

● A group of system calls:
– execl, execv, execle, execve, execlp, execvp, 

fexecv   



  

Process API

● Some Coding
– fork
– fork, wait
– fork, wait, execvp



  

Process API

● What's happening behind fork()?
– The child get a “copy” of parent's data space, 

stack, heap
● the system call: clone()

– “Copy-on-write”
● Not really copy the data, but share the data with 

“read only” flag
● If parent or child writes on a shared address, the 

kernel make a copy of that piece of memory only 
(usually a page)



  

Process API

● What's happening behind fork()?
– File sharing

● fd
● File offsets



  

Process API

● What's happening behind fork()?
– Other shared data:

● User ID, group ID…
● Current working directory
● Environment
● Memory mapping
● Resources limits
● ...



  

Process API

● What's happening behind exit()?
– Close all fds, release all memory, …
– Inform the exit status to the parent process, 

which can be captured by wait()



  

Process API

● What's happening behind wait()?
– The parent terminates first?

● The init process (PID=0) 

– The child terminates first?
● The kernel keeps a small amount of information 

for every terminating process
● Available when the parent calls wait()

– PID, termination status, the amount of CPU time
● zombies



  

Process API

● What's happen behind wait()/waitpid()
– wait(): block the caller until a child process 

terminates
– waitpid(): wait which child, and some other 

options



  

Process API

● What's happening behind exec()?
– Replace the current process with a new 

program from disk
● Text, data, heap, stack

– Start from the main() of that program



  

Process API

● Process API summary
– fork(): create a new process
– wait(): wait for a child
– exit(): destroy a process
– exec(): execute a program in child



  

Project1a

● Implement your own shell
– Use fork, wait, execvp
– Also open, close, dup2



  

Project1a Details

● Basic shell
– Run your shell by: ./mysh
– It will print a prompt:

 

    mysh> 

– You can type some commands

    mysh> ls

– Hit ENTER, the command will be executed



  

Project1a Details

● Build-in Commands
– When “mysh” execute a command, it will 

check weather it is a build-in or not. 
– For build-in commands, you should involve 

your implementation.
– They are:

● exit
● wait
● cd
● pwd



  

Project1a Details

● Redirection
– Your shell should support redirection:

    mysh> ls -l > output

– The file “output” contain the result of “ls -l”



  

Project1a Details

● Background Jobs
– Your shell should be able to run jobs in the 

background

    mysh> ls &

– Your shell will continue to work rather than 
wait.



  

Project1a Details

● Batch mode
– Your shell should be able to run in batch 

mode

./mysh  batch_file

– Your shell will run the commands in batch_file
– E.g, “batch_file” contains

    ls -l
cat batch_file



  

Project1a Details

● Bonus: Pipe
– The pipe connect the input/output of different 

commands

  mysh> grep “hello” FILE | wc -l

– How many lines have “hello”



  

Project1b Details

● Adding a system call for xv6
– Understanding the low-level mechanism 
– Kernel mode, user mode
– Trap
– Interrupt handler



  

Project1b Details

● The system call
– int getreadcount()
– Return how many times the read() system 

call has been called



  

Project1b Details

● Get familiar with xv6
– QEMU emulator

● Installed with make

– Compile and run xv6
● Compile: make
● Run: make qemu-nox
● Debug: make qemu-nox-gdb
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