

Operating System Labs

Yuanbin Wu
cs@ecnu

Announcement

● Project 1 due
– 21:00 Oct. 6

Operating System Labs

● The abstraction of process
● CPU virtualization

– Low level and high level mechanisms
● Process API
● Project 1a

The Abstraction of Process

● Process
– Running programs

● What does a process consist of?
– CPU

● Program Counter (PC)
● Stack Pointer / Frame Pointer

– Memory
● Address space

– Disk
● Set of file descriptors

The Abstraction of Process

● proc file system
– “Everything is file”
– Example

● cat /proc/<PID>/status
● cat /proc/<PID>/maps
● cat /proc/<PID>/fd
● cat /proc/<PID>/io

– Provide a method of communication between kernel
space and user space

● ps command

The Abstraction of Process

● Operations on a Process
– Create
– Destroy
– Wait
– Miscellaneous Control
– Get status

The Abstraction of Process

● Example: process creation
– Load code and static data
– Establish stack

● local variables, function calls

– Init heap
● malloc, free

– Allocate file descriptors
● STDIN_FILENO
● STDOUT_FILENO
● STDERR_FILENO

The Abstraction of Process

● Process States

The Abstraction of Process

● Process States

The Abstraction of Process

● Data structures

CPU Virtualization

● What
– Provide the illusion of many CPUs

● Why
– Multi-task

● How
– Time sharing

CPU Virtualization

● Mechanisms
– Low level mechanisms

● Context switch

– High level intelligence
● Scheduling policy

CPU Virtualization

● Low level mechanisms
– Direct Execution

● Just run a program on CPU directly

Direct Execution

● Problems of direct execution
– Visit any memory address
– Open any file
– Directly play with hardwares (e.g. I/O)

Lost control

Limited Direct Execution

● Limited Direct Execution
– Kernel model and user model
– “restricted operations”

● By OS

– When a thread needs “restricted operations”
● System call

Limited Direct Execution

● User mode
– The behavior of the code is restricted

● Kernel mode
– The code can do what it likes to do

● Issue I/O, executing all types of instructions,...

● How to switch?
– System call

System Call

● Hardware supports on system call
– A bit in CPU identifies kernel/user mode
– “trap” instruction
– “return-from-trap” instruction
– Save the registers before do the restricted

operation (kernel stack)

Limited Direct Execution

● Switching between processes
– Cooperative approach

● OS trusts the process to yield CPU properly

– Non-cooperative approach
● OS revokes the control of CPU periodically
● Time interrupt
● Scheduler

Limited Direct Execution

● Low-level mechanisms: summary
– Direct execution
– Limited direct execution
– Switch between processes

Scheduling Policy

● High level intelligence
– Scheduling policy

● First In, First Out
● Shortest job first
● Shortest time to complete first
● Round Roubin

CPU virtualization

● Summary of CPU virtualization
– Low level mechanisms

● A little hardware support goes a long way

– High level mechanisms

Process API

● Process API
– fork(), exec(), wait(), exit()
– Create, execute, wait and terminate a

process
– May be the strangest API you've ever met

Process API

● fork()
– Create a new process
– Exactly copy the calling process

● The return code of fork() is different
– In parent: fork() return the pid of the child
– In child: fork() return 0

● Who will run first is not determined

Process API

● wait()
– Wait for child to finish his job
– The parent will not proceed until wait()

return.
● waitpid()

Process API

● exec()
– Execute a different program in child process

● A group of system calls:
– execl, execv, execle, execve, execlp, execvp,

fexecv

Process API

● Some Coding
– fork
– fork, wait
– fork, wait, execvp

Process API

● What's happening behind fork()?
– The child get a “copy” of parent's data space,

stack, heap
● the system call: clone()

– “Copy-on-write”
● Not really copy the data, but share the data with

“read only” flag
● If parent or child writes on a shared address, the

kernel make a copy of that piece of memory only
(usually a page)

Process API

● What's happening behind fork()?
– File sharing

● fd
● File offsets

Process API

● What's happening behind fork()?
– Other shared data:

● User ID, group ID…
● Current working directory
● Environment
● Memory mapping
● Resources limits
● ...

Process API

● What's happening behind exit()?
– Close all fds, release all memory, …
– Inform the exit status to the parent process,

which can be captured by wait()

Process API

● What's happening behind wait()?
– The parent terminates first?

● The init process (PID=0)

– The child terminates first?
● The kernel keeps a small amount of information

for every terminating process
● Available when the parent calls wait()

– PID, termination status, the amount of CPU time
● zombies

Process API

● What's happen behind wait()/waitpid()
– wait(): block the caller until a child process

terminates
– waitpid(): wait which child, and some other

options

Process API

● What's happening behind exec()?
– Replace the current process with a new

program from disk
● Text, data, heap, stack

– Start from the main() of that program

Process API

● Process API summary
– fork(): create a new process
– wait(): wait for a child
– exit(): destroy a process
– exec(): execute a program in child

Project1a

● Implement your own shell
– Use fork, wait, execvp
– Also open, close, dup2

Project1a Details

● Basic shell
– Run your shell by: ./mysh
– It will print a prompt:

 mysh>

– You can type some commands

 mysh> ls

– Hit ENTER, the command will be executed

Project1a Details

● Build-in Commands
– When “mysh” execute a command, it will

check weather it is a build-in or not.
– For build-in commands, you should involve

your implementation.
– They are:

● exit
● wait
● cd
● pwd

Project1a Details

● Redirection
– Your shell should support redirection:

 mysh> ls -l > output

– The file “output” contain the result of “ls -l”

Project1a Details

● Background Jobs
– Your shell should be able to run jobs in the

background

 mysh> ls &

– Your shell will continue to work rather than
wait.

Project1a Details

● Batch mode
– Your shell should be able to run in batch

mode

./mysh batch_file

– Your shell will run the commands in batch_file
– E.g, “batch_file” contains

 ls -l
cat batch_file

Project1a Details

● Bonus: Pipe
– The pipe connect the input/output of different

commands

 mysh> grep “hello” FILE | wc -l

– How many lines have “hello”

Project1b Details

● Adding a system call for xv6
– Understanding the low-level mechanism
– Kernel mode, user mode
– Trap
– Interrupt handler

Project1b Details

● The system call
– int getreadcount()
– Return how many times the read() system

call has been called

Project1b Details

● Get familiar with xv6
– QEMU emulator

● Installed with make

– Compile and run xv6
● Compile: make
● Run: make qemu-nox
● Debug: make qemu-nox-gdb

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

