

Operating System Labs

Yuanbin Wu
CS@ECNU

Operating System Labs

● Project 2 Due
– 21:00, Nov. 15

● Project 2
– Random group of 3 !
– You now have 3 “late days”, but start early!
– Oral test at week 12 (Nov. 30)

Operating System Labs

● C Memory API
● Free Memory Management

C Memory API

● Type of memory
– Stack
– Heap

C Memory API

● Stack
– Allocated / Deallocate automatically
– By the compiler
– Automatic memory

C Memory API

● Stack
– Example (local variable)

– You only declare the variable
– Compiler will allocate it when call the function
– Also deallocate it when func returns

void func()
{

int x = 0;
 ...
}

C Memory API

● Heap
– Allocated / Deallocate explicitly
– By you, the programmer

C Memory API

● Heap
– Example (malloc)

– Both stack and heap allocation
– When func returns,

● Stack memory will be deallocated
● Heap memory is still there

void func()
{

int *ptr = (int*)malloc(sizeof(int));
 ...
}

C Memory API

● Stack and Heap
– Heap

● From low addr to high addr

– Stack
● From high addr to low addr

● Let's see Free

Heap

Stack

Code
00000000

FFFFFFFF

● A real address space layout

C Memory API

● Malloc

– If failed, return NULL
● Free

#include <stdlib.h>
void *malloc(size_t size);

#include <stdlib.h>
void free(void* ptr);

 Allocation

Free

C Memory API

● Segment fault

● run this code, it will likely lead to a

 segmentation fault
● It is a fancy term for

YOU DID SOMETHING WRONG WITH MEMORY
YOU FOOLISH PROGRAMMER AND I AM ANGRY.

char *src = "hello";
char *dst;
strcpy(dst, src);

Segmentation Fault

Correct Code

Works, but buggy

Uninitialized Read

● Wild pointer

Memory Leak

Dangling Pointer

C Memory API

● Standard library
– malloc(), realloc(), free()

● System calls
– brk(), sbrk()
– mmap()

● For comparison
– printf() and write()
– “Buffer the system call“

System calls: brk(), sbrk()

● brk/sbrk: expand the program’s break.
– break: The location of the end of the heap in

address space

#include <unistd.h>

int brk(void *addr)
void *sbrk(intptr_t increment);

System calls: mmap()
#include <sys/mman.h>

void *mmap(void *ptr, size_t length, int port, int
flags, int fd, off_t offset)

C Memory API

● Summary: common errors
– Forget to allocate memory
– Not allocating enough memory
– Forget to initialize allocated memory
– Forget to free memory
– Free memory before you are done with it
– Free memory repeatedly
– Call free() incorrectly

Free Memory Management

Dark Forest of Pointers

Free Memory Management

● Fixed-size unit
– Paging
– Problem: internal fragmentation

● Variable-size unit
– User level memory allocation library
– Kernel level: VM implemented with

segmentation
– Problem: external fragmentation

Free Memory Management

● Free memory management
– How to manage variable-size free memory

units
– How to implement

● malloc(size_t size)
● free(void *ptr)

Free Memory Management

● Assumptions
– Focus on external fragmentation
– No compaction
– Manage a contiguous region of bytes (by

mmap() system call)

Free Memory Management

● Low-level Mechanisms
– Splitting and Coalescing
– Tracking allocated regions
– Implementation of a free list

● High-level Intelligence
– Best fit
– Worst fit
– First fit
– Next fit

Free Memory Management

● Splitting and Coalescing
– Free list: a set of free chunks
– Two chunks (10 bytes each)

Free Memory Management

● Splitting and Coalescing
– request less than 10 bytes? (e.g. malloc(1))
– Splitting

Free Memory Management

● Splitting and Coalescing
– Free a chunk?

– Malloc(20)?
– Coalescing

Free Memory Management

● Tracking Allocated Regions
– Observation on free(void *ptr)

● No size parameter

– Given a pointer, the malloc library could
determine the size of region

– How?
● Some extra information
● header of a memory block

Free Memory Management

● Tracking Allocated Regions
– header

– malloc(20)

typedef struct __header_t {
int size;
int magic;

} header_t;

Free Memory Management

● Tracking Allocated Regions
– header: example

Free Memory Management

● Tracking Allocated Regions
– free(ptr)

● Get the size of the region

● Check whether ptr is valid

void free(void *ptr) {
header_t *hptr = (void *)ptr - sizeof(header_t);

}

assert(hptr->magic == 1234567)

Free Memory Management

● Implementation of the Free List
– Free list

– Implementation
● List node (allocate a node when needed)
● Can NOT do this here! All you have is a given free

space

– How to build a free list inside the free space?

Free Memory Management

● Implementation of the Free List
– Node in free list

typedef struct __node_t {
int size;
struct __node_t *next;

} node_t;

Free Memory Management

● Implementation of the Free List
– Initialization (e.g. 4096)

// mmap() returns a pointer to a chunk of free space
node_t *head = mmap(NULL, 4096, PROT_READ|
 PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
head->size = 4096 - sizeof(node_t);
head->next = NULL;

Free Memory Management

● Implementation of the Free List
– malloc(100)

3980

● malloc(100)*3

The free 3764-byte chunk

3764

● Free(16500)
– 16384+108+8

3764

The free 3764-byte chunk

● Free()*3
● Coalesce

– Merge adjacent

chunks

The free 3764-byte chunk

3764

Free Memory Management

● Growing the Heap
– What if the heap runs out of space?

● Return NULL

– Increase the size of heap
● OS find free physical pages
● Map them into address space of the process

Free Memory Management

● Summary of low-level Mechanisms
– Splitting and Coalescing
– Tracking allocated regions
– Implementation of a free list
– Growing the heap

Free Memory Management

● High-level intelligence
– How to find the proper nodes in the free list?

● Less fragmentation
● Fast allocation

– Some simple strategies
● The stream of allocation and free requests can be

arbitrary
● Any strategy could be arbitrarily bad/good

Free Memory Management

● Best Fit
– Find the smallest feasible node

● Worst Fit
– Find the largest feasible node

● First Fit
– Find the first feasible node

Free Memory Management

● Example
–

– Best fit

– Worst fit

Free Memory Management

● Other approaches
– Segregated List

● Slab allocator

– Buddy Allocation
● Binary search tree

Free Memory Management

● Dlmalloc (Doug Lea allocator)
– Segregated list for small size allocations
– Search the free list
– sbrk and mmap
– …

● http://g.oswego.edu/dl/html/malloc.html
● https://cs61.seas.harvard.edu/wiki/images/

e/e2/Lec11-Dynamic_memory_2.pdf

http://g.oswego.edu/dl/html/malloc.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

