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Operating System Labs

● Project 2 Due
– 21:00, Nov. 15 

● Project 2 
– Random group of 3 !
– You now have 3 “late days”, but start early! 
– Oral test at week 12 (Nov. 30)



  

Operating System Labs

● C Memory API
● Free Memory Management



  

C Memory API

● Type of memory
– Stack 
– Heap



  

C Memory API

● Stack
– Allocated / Deallocate automatically
– By the compiler
– Automatic memory



  

C Memory API

● Stack
– Example (local variable)

– You only declare the variable
– Compiler will allocate it when call the function
– Also deallocate it when func returns 

void func()
{

int x = 0;
     ...
}



  

C Memory API

● Heap
– Allocated / Deallocate explicitly
– By you, the programmer



  

C Memory API

● Heap 
– Example (malloc)

– Both stack and heap allocation
– When func returns, 

● Stack memory will be deallocated
● Heap memory is still there

void func()
{

int *ptr = (int*)malloc(sizeof(int));
     ...
}



  

C Memory API

● Stack and Heap
– Heap

● From low addr to high addr

– Stack
● From high addr to low addr

● Let's see Free

Heap

Stack

Code
00000000

FFFFFFFF



  

● A real address space layout



  

C Memory API

● Malloc

– If failed, return NULL 
● Free

#include <stdlib.h>
void *malloc(size_t size);

#include <stdlib.h>
void free(void* ptr);



  

 Allocation



  

Free



  

C Memory API

● Segment fault

● run this code, it will likely lead to a

 segmentation fault
● It is a fancy term for 

YOU DID SOMETHING WRONG WITH MEMORY 
YOU FOOLISH PROGRAMMER AND I AM ANGRY.

char *src = "hello";
char *dst;          
strcpy(dst, src); 



  

Segmentation Fault



  

Correct Code



  

Works, but buggy



  

Uninitialized Read

● Wild pointer



  

Memory Leak



  

Dangling Pointer



  

C Memory API

● Standard library
– malloc(), realloc(), free()

● System calls
– brk(), sbrk()
– mmap()

● For comparison
– printf() and write()
– “Buffer the system call“



  

System calls: brk(), sbrk()

● brk/sbrk: expand the program’s break.
– break: The location of the end of the heap in 

address space

#include <unistd.h>

int brk(void *addr)
void *sbrk(intptr_t increment);



  

System calls: mmap()
#include <sys/mman.h>

void *mmap(void *ptr, size_t length, int port, int 
flags, int fd, off_t offset)



  

C Memory API

● Summary: common errors
– Forget to allocate memory
– Not allocating enough memory
– Forget to initialize allocated memory
– Forget to free memory
– Free memory before you are done with it
– Free memory repeatedly 
– Call free() incorrectly



  



  

Free Memory Management

Dark Forest of Pointers



  

Free Memory Management

● Fixed-size unit
– Paging
– Problem: internal fragmentation

● Variable-size unit
– User level memory allocation library
– Kernel level: VM implemented with 

segmentation
– Problem: external fragmentation



  

Free Memory Management

● Free memory management
– How to manage variable-size free memory 

units
– How to implement

● malloc(size_t size)
● free(void *ptr)



  

Free Memory Management

● Assumptions
– Focus on external fragmentation
– No compaction
– Manage a contiguous region of bytes (by 

mmap() system call)



  

Free Memory Management

● Low-level Mechanisms
– Splitting and Coalescing
– Tracking allocated regions
– Implementation of a free list

● High-level Intelligence
– Best fit
– Worst fit
– First fit
– Next fit



  

Free Memory Management

● Splitting and Coalescing
– Free list: a set of free chunks
– Two chunks (10 bytes each)



  

Free Memory Management

● Splitting and Coalescing
– request less than 10 bytes? (e.g. malloc(1))
– Splitting



  

Free Memory Management

● Splitting and Coalescing
– Free a chunk?

– Malloc(20)?  
– Coalescing



  

Free Memory Management

● Tracking Allocated Regions
– Observation on free(void *ptr) 

● No size parameter

– Given a pointer, the malloc library could 
determine the size of region

– How?
● Some extra information
● header of a memory block



  

Free Memory Management

● Tracking Allocated Regions
– header

– malloc(20)

typedef struct __header_t {
int size;
int magic;

} header_t;



  

Free Memory Management

● Tracking Allocated Regions
– header: example



  

Free Memory Management

● Tracking Allocated Regions
– free(ptr)

● Get the size of the region

● Check whether ptr is valid

void free(void *ptr) {
header_t *hptr = (void *)ptr - sizeof(header_t);

}

assert(hptr->magic == 1234567)



  

Free Memory Management

● Implementation of the Free List
– Free list 

– Implementation
● List node (allocate a node when needed)
● Can NOT do this here! All you have is a given free 

space

– How to build a free list inside the free space?



  

Free Memory Management

● Implementation of the Free List
– Node in free list

typedef struct __node_t {
int size;
struct __node_t *next;

} node_t;



  

Free Memory Management

● Implementation of the Free List
– Initialization (e.g. 4096)

// mmap() returns a pointer to a chunk of free space
node_t *head = mmap(NULL, 4096, PROT_READ|
                                 PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
head->size = 4096 - sizeof(node_t);
head->next = NULL;



  

Free Memory Management

● Implementation of the Free List
– malloc(100)

3980



  

● malloc(100)*3

The free 3764-byte chunk

3764



  

● Free(16500)
– 16384+108+8

3764

The free 3764-byte chunk



  

● Free()*3
● Coalesce

– Merge adjacent

chunks

The free 3764-byte chunk

3764



  

Free Memory Management

● Growing the Heap
– What if the heap runs out of space?

● Return NULL

– Increase the size of heap
● OS find free physical pages
● Map them into address space of the process



  

Free Memory Management

● Summary of low-level Mechanisms
– Splitting and Coalescing
– Tracking allocated regions
– Implementation of a free list
– Growing the heap



  

Free Memory Management

● High-level intelligence
– How to find the proper nodes in the free list?

● Less fragmentation
● Fast allocation

– Some simple strategies
● The stream of allocation and free requests can be 

arbitrary 
● Any strategy could be arbitrarily bad/good



  

Free Memory Management

● Best Fit
– Find the smallest feasible node

● Worst Fit
– Find the largest feasible node

● First Fit
– Find the first feasible node 



  

Free Memory Management

● Example
–

– Best fit

– Worst fit



  

Free Memory Management

● Other approaches
– Segregated List

● Slab allocator

– Buddy Allocation
● Binary search tree



  

Free Memory Management

● Dlmalloc (Doug Lea allocator)
– Segregated list for small size allocations
– Search the free list
– sbrk and mmap
– …

● http://g.oswego.edu/dl/html/malloc.html
● https://cs61.seas.harvard.edu/wiki/images/

e/e2/Lec11-Dynamic_memory_2.pdf

http://g.oswego.edu/dl/html/malloc.html
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