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Operating System Labs

* Project 3
- Due: 6 Dec.



Oral Tests

* Project 2 oral test
- Date: Nov. 30

c How

- 10min presentation
- 5min Q&A



Oral Tests

e Who

- Principle: you should take at least one oral
test

- We assume that you know all
design/implementation details about your
project




Oral Tests

 Examples organization of presentations

- What have you done?
* Project background

- How did you accomplish them?
* data structures, algorithms,

- Your favorite parts.

- Features that you've tried, but failed
- What did you learn from the project?
- Possible future improvements

* Highlight your new features (of part a or part b)



Oral Tests

» Suggestions for your slides

- The clew model and onion model

- Minimize words, maximize pictures
- Simple and clear

- Large font

* Suggestions for your talk

f you are an audience of your own talk...
Design your rhythm, pauses, actions...

Practice



Oral Tests

* Suggestions from Jonathan Shewchuk (UC
Berkeley)

— Ihttp://www.cs.berkeley.edu/~jrs/speaking.htm

* How to speak, by Patrick Winston (MIT)

- https://www.bilibili.com/video/BV1K54y1m7M
613? rom=search&seid=320703772139902162


http://www.cs.berkeley.edu/~jrs/speaking.html
http://www.cs.berkeley.edu/~jrs/speaking.html
https://www.bilibili.com/video/BV1K54y1m7M6?from=search&seid=3207037721399021621
https://www.bilibili.com/video/BV1K54y1m7M6?from=search&seid=3207037721399021621
https://www.bilibili.com/video/BV1K54y1m7M6?from=search&seid=3207037721399021621

Operating System Labs
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Operating System Labs

* Review of Memory Management
* Project 2 part b(xv6)



Memory Management

OKEBE

* Early days

Operating System
(code, data, etc.)

64KE

Current Program
(code, data, etc.)

max



Memory Management

* Multiprogramming

- multiple processes could be ready to run at a
given time

- the OS would switch between them
* Time sharing

- many users might be concurrently using a
machine



Memory Management
 Multiprogramming and Time Sharing
- Multiple processes live in memory

simultaneously
OKE
Operating System
(code, data, etc.)
G4KB
(iree)
128KB
Process C
(code, data, etc.)
192KB
Process B
(code, data, etc.)
256KB
{free)
320KB
Process A
(code, data, etc.)
384KB
{free)
448KB
(free)

512KB




Memory Management

 Multiprogramming requires easy-to-use
virtualization of memory

- A concept called “address space”

OKB
the code sagmeant:
F‘rogram Code where instructions live
1KB
the heap segment:
Heap contains malloc'd data
KB dynamic data siructures
l (it grows downward)
(free)
‘ (it grows upward)
the stack segment:
15KB contains local variables
arguments o roulines,
Stack return values, elc.
16KE




Memory Management

* Two views on memory

- From processes: different processes have

different address spaces

- From OS: limited physical memory cells

OKB

E4KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Frocess B
(code, data, etc.)

{free)

Process A
(code, data, etc.)

{free)

(free)

OKB

1KB

2KB

15KB

16KB

Program Code

Heap

(free)

Stack

the coda sagmant:
where instructions live

the heap segment,
contains malloc'd data
dynamic data structuras

(it grows downward)

(it grows upward)
the stack sagment:
contains local variables
arguments to roufinas,
rafurn values, efe,



Memory Management

« Memory management

- How OS provides such easy-to-use address
spaces for processes?

- Virtualization of memory
 Recall: virtualization of CPU



Memory Management

* Goals of Virtualize Memory

- Transparency
- Efficiency
- Protection

 The OS should make sure to protect processes
from one another



Memory Management

* Transparency

- OS should implement virtual memory in a
way that is invisible to the running program

- From the programmer's point of view:

 Every address is fraud
 Only the OS knows the truth



Memory Management

* Virtualize Memory: Limited Direct Execute

- Hardware:

* transparency, efficiency, protection
- OS:

« configure hardware correctly

* manage free memory
 handle exception

« Hardware-based address translation



Memory Management

 Hardware: Transparency

- We starts with a simple idea called

 Base and bounds
 Dynamical (hardware-based) allocation



OKB

An Example e 195 | o veoax Doroueb)
Program Code
2KB
\{/oid func () KB Heap
int x; 4KB
X =X+ 3; l
}
128: movl 0x0(%ebx), %eax ;load O+ebx into eax
132: addl $0x03, %eax ;add 3 to eax register
135: movl %eax, 0x0(%ebx) ;store eax back to mem (free)
Fetch instruction at address 128
Execute this instruction (load from address 15 KB)
Fetch instruction at address 132
Execute this instruction (no memory reference) ‘
Fetch the instruction at address 135 14KB
Execute this instruction (store to address 15 KB) D .
Stack

16KB




Address space

OKB

1KB

2KB

3KB

4KB

14KB

15KB

16KB

128
130
133

e D0 ¥eabin), Yeaax
addl 0=03, %%eax
gl e, x| Seeh)

Program Code

Heap

(free)

3000
Stack

Hardware: OKB
- 2 reqisters in CPU
- Base: the start of phy mem
- Bound: the size of phy mem

16KE

<)

| | 32KB
physical = virtual + base

Base: 32K

Bound: 16K AGKE

64KE

Operating System

(not in use)

Code
H'il‘[m
(allocated but not in uss)

T

Stack

[not in usée)

Physical Memory

Helocated Process



Relocated Process

physical = virtual + base Address Space Physical Memory
OKB 128 [ o] Dx{ Yeab ), Veaax
Fetch instruction at address 128 g [T e e OKB
Execute (load from address 15 KB) Program Code
Fetch instruction at address 132 2KB Operating System
Execute (no memory reference) . eap
Fetch the instruction at address 135 16KB
Execute (store to address 15 KB) 4KB
l (not in use)
Visiting address 128 42KB A i}
Heap
!
128 + 32K (allocated but not in uss)
—_— |
= 128 + 32768 48KE S |
—_ 32896 (free)
[nm in UEE]I
64KB
Base: 32K 14KB ‘
Bound: 16K I
Stack
16KE




physical = virtual + base Address Space Physical Memory

OKB

128 [ o] Dx{ Yeab ), Veaax
130 | addl 0x03, Yeeax

Relocated Process

Fetch instruction at address 128 g e (et OKB
Execute (load from address 15 KB) Program Code
Fetch instruction at address 132 2KB Operating System
Execute (no memory reference) . eap
Fetch the instruction at address 135 16KB
Execute (store to address 15 KB) 4KB
l (not in use)
128: movl 0x0(%ebx), Y%eax 39KB _
Ciode
Heap
'
15K + 32K [allocated but not in uss)
—_— |
-_ 47K ABKB Stack |
(free)
(Aot in usea)

64KEB

Base: 32K 14KB ‘
Bound: 16K oK

16KB

2000
Stack




Memory Management

« Hardware: Protection

- Bounds reg

- Raise an exception when the required
address is illegal

- Know how to do when exceptions are raised
- E.qQ.

Base: O
Bound: 4K

« Then address 4400 is illegal according to the
Bound



Memory Management

 Hardware: Efficiency

- The reqisters are in CPU chip

- The part of CPU related to address translation
Is called: MMU (memory management unit)



Memory Management

« Hardware requirements summary

- Privil

eged mode

- Base/bounds registers
- Ability to translate virtual addresses and check if

withi
- Privi
- Privi

NaNnC

n bounds
eged instruction(s) to update base/bounds

eged instruction(s) to register exception
lers

- Ability to raise exceptions



Memory Management

e OS:

- Maintain a data structure: free list

* Find place in physical memory for a process when
creating it

* Collect the space when a process terminate
- Context switch

« Correctly configure base / bound register
- Handle exception



OS @ boot Hardware
(kernel mode)

initialize trap table
remember addresses of...
system call handler
timer handler
illegal mem-access handler
illegal instruction handler
start interrupt timer
start timer; interrupt after X ms
initialize process table
initialize free list



0OS @ run
(kernel mode)

Hardware Program
(user mode)

To start process A:
allocate entry in process table

allocate memory for process
set base/bounds registers

return-from-trap (into A)

restore registers of A
move to user mode
jump to A’s (initial) PC
Process A runs
Fetch instruction



Memory Management

* Two implementation of virtual memory

- Segmentation
- Paging



Segmentation

 The problem of Base and Bound

- Load entire address space
- Wasteful
- How to support large address spac

OKB

1KB

2KB

3KB

B

KB

5KB

6KEB

14KB

15KB

16KB

Program Code

free)

Stack




Segmentation

e Solution:

- Multiple base/bound

- 3 logical segmentations

 Code
e Stack
* Heap

- 3 groups of base/bound registers



Segmentation

. OKB
* Multiple base/bound
: Operating System
- Physical memory
: 16KB
Segmentation Base Size
(not In use)
Code 32K 2K sgm
32KB LA
Heap 34K 2K Hegg
Stack 28K 2K
48KB \
(not in use)

64KEBE




Example: multiple base/bound

OKE

16KE

J2KB

48KB

G64KEB

Visit virtual memory

Operating System

100

v

Address translation:
32K+100 = 32868

v

Address checking:

Size

2K
2K

(not i|;| use) 100 < 2K
Stachk +
(not in use) L . .
Code ) Visit physical memory:
HE"fF' 32868
(not in use) Segmentati Base
on
Code 32K
Heap 34K
Stack 28K

2K

OKB

1KE

2KB

3KB

4KB

5KB

6KB

14KB

15KB

16KB

—

Program Code

Heap

{free)

Stack




Example: multiple base/bound

OKE

16KE

J2KB

48KB

G64KEB

Visit virtual memory

Operating System

4200
v

Address translation:
34K+(4200-4K)=34920

. Address checking:
(not ||;| use) 104 < 2K

Siack +
[nutl;:d:se} Visit physical memory:
MO Segmentati Base Size

on
Code 32K 2K
Heap 34K 2K

Stack 28K 2K

OKB

3KB

4KB

5KB

6KB

14KB

15KB

16KB

Program Code

{free)

Stack




Example: multiple base/bound

OKE

16KE

J2KB

48KB

G64KEB

Visit virtual memory

Operating System

4200
v

Address translation:
34K+(4200-4K)=34920

v

Address checking:

(not in use) 104 < 2K
51;|:h +
(not in use) Visit physical memory:
Code
_ Problem:
(not in use) How we know 4200 is at heap?

OKB

3KB

4KB

5KB

6KB

How to interpret an virtual address?

15KB

16KB

Program Code

{free)

Stack




Segmentation

 Which segmentation are we referring to

- Explicit approach

* top few bits of the virtual address
- Example:

16K address space —» 14 bit

[ | [ [ T [ [T T 1T T]]

Eegﬁ'nent Offsel




Segmentation

 Which segmentation are we referring to
- Example: 4200

‘1111][:":][:'[]11[)1[:"3[:"

Segment Offses




Segmentation

 Which segmentation are we referring to

/] get top 2 bits of 14-bit VA
Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT

/] now get offset

Offset = VirtualAddress & OFFSET_MASK

if (Offset >= Bounds[Segment])
RaiseException(PROTECTION_FAULT)

else

PhysAddr = Base[Segment] + Offset

Register = AccessMemory(PhysAddr)



Segmentation

OKB
 About the stack
' Operating Syst
- Difference perating System
« growth backwards 16KB
* 28K - 26K (not in use)
51;|:h
319KB (not I;:d ;.Jse}
Hegp
Segmentation Base Size i
Code 32K 2K 48K -
(not in use)
Heap 34K oK
Stack 28K 2K 84KE




Segmentation

« About the stack

- Solution: extra hardware support

- one bit in MMU

* 1: growth in positive direction
* 0: growth in negative direction

Segmentati Base Size Grows

on Postive
Code 32K 2K 1
Heap 34K 2K 1

Stack 28K 2K 0



OKB

Example: multiple base/bound
Visit virtual memory 1KB Program Code
15K |11 11 00 00 00 00 00
\
OKB Address translation:
[1] segment = 11 - stack reg 4KB
Operating System [2] offset = 3K 5KB Hea
[3] maximum segment = 4K P
[4] 3K - 4K = -1K 6KB
1GKE [5] physical addr: l
51aTch ~— #
(not in use)
32KB Code Address checking:
sz I-1K| < 2K (74
\/
Visit physical memory:
48KE :
(not in use)
Segmentation Base Size Grows ‘
Postive
14KE
Code 32K 2K 1
64KB Heap 34K 2K 1 ore ek
16KB




Segmentation

* Support for Sharing
- Protection bit

Segmentatio Base Size Grows  Protection
n Postive
Code 32K 2K 1 Read-
Execute
Heap 34K 2K 1 Read-Write

Stack 28K 2K 0 Read-Write



Segmentation

« Summary

- Base/Bound registers in MMU
- Multiple Base/Bound

- Growth direction

- Protection

* Problem
- Where to place new address spaces

- External fragmentation
- Free memory management



Paging

 Segmentation

- Splitting address space with variable size
logical segmentations

* Paging

- Divide address space into fixed size units
(pages)



Paging

 Example:

- 64 Byte address space (i.e., 6 bit pointer)

- 16 Byte page

- 128 Byte physical memory

0
{paga 0 of the address EFIE.E:E}
16
(page 1)
32
(page 2)
48
(page 3)
64

Pages of the virtual address space
are placed at different locations
throughout physical memory

0

16

32

48

64

80

96

112

128

reserved for OS

{unused)

page 3 of AS

page 0 of AS

{unused)

page 2 of AS

(unused)

page 1 of AS

page frame 0 of physical memory

page frame 1

page frame 2

page frame 3

page frame 4

page frame 5

page frame 6

page frame 7



Paging

 Advantages

- Flexible

 make no assumptions about the direction the
heap/stack grow, how they are used.

- Simple
 Simple free memory management
* A free list of free pages



Paging

* Virtual page —» physical frame

- Page Table

- A data structure
VPO - PF3
VP1 - PF7
VP2 - PF5
VP3 - PF2

- In each process

16

32

80

96

112

128

reserved for OS

{unused)

page 3 of AS

page 0 of AS

{unused)

page 2 of AS

{unused)

page 1 of AS

page frame 0 of physical memary

page frame 1

page frame 2

page frame 3

page frame 4

page frame 5

page frame 6

page frame 7



« Address translation

- Virtual address:
* Virtual Page Num (VPN)

« Offset
- Example

64 Byte virtual address (6 bit pointer)
16 Byte per page

Paging

VPN

oftset

Vah

Vad

Val

Va2

Vai

Val

Va3

Vad

Vad

Vad

Vai

Val




« Address translation

- movl 21, %eax
- Binary of 21: 010101

- 5th pyte (0101) of 1st virtual page (01)

+ VP1 - FP7

16

32

80

96

112

reserved for OS5

{unused)

page 3 of AS

page 0 of AS

{unused)

page 2 of AS

{unused)

A page 1 of AS

page frame 0 of physical memaory

page frame 1
page frame 2
page frame 3
page frame 4
page frame 5
page frame 6

page frame 7



Paging

« Address translation

VPN offset
Virtual
Address 0 ! 0 ! .
Address
Translation
Vbbb b
Physical
Addrass 1 1 1 0 1 0

PFN offset



Paging

e Questions

- Where are page tables stored?

- What are the typical contents of the page
table?

- How big are the tables?
- Does paging make the system (too) slow?



Paging

How big are the tables?

- 32Dbit address space
- 4K page size
— 20bit VPN + 12bit offset
- 220 = 1M
translations that the OS would manage
- For each process!

Page Table Entry (PTE)

- 4 Byte

Page table size: 220 * 4 = 4M

If we have 100 active processes: 400M
How about 64bit systems?



Paging

« Where are page tables stored?

- Not in MMU (so big)

- In OS's memory

* Physical memory managed by OS
* Virtual memory of OS (can be swapped out)



Paging

 What's actually in a page table?

- Page Table Entry (PTE)
- An array (linear page table)
- OS indexes the array with VPN

- PTE

- PFN

- Valid bit: whether the VPN is unused

- Protection bit: read/write/execute

Present bit: whether the page on physical memory or on disk (swapped out)

- Dirty bit: whether the page has been modified since it is brought into
memory

Reference bit: whether a page has been accessed

]

1 30 20 28 27 28 26 24 23 22 21 2019 18 17 1615 14 13121110 9 B T & &

|
PFN z|o|<|3
ClE &

PWT [
RW |~
=l




Paging

* Too slow

VPN = (VirtualAddress & VPN_MASK) >> SHIFT

PTEAddr = PagelableBaseRegister + (VPN * sizeof(PTE))

« Example

int array[1000];

for (i = 0:i < 1000: i+4)
array[i] = 0;

0x1024 movl $0x0, (%edi,%eax,4)
0x1028 incl %eax

0x102c cmpl $0x03e8, %eax
0x1030 jne 0x1024



* Too slow

Paging

PageTable[39]

PageTable[1)

e~ T S S R T T T S T

40100 ~ 2 -
E

40050 - -

Array (VA)

40000 —= —
1124 -

inc

maov
emp
jne

1074 - -

1024 -l nl .I. nN u L nb .I. nlN .r. n® .
0 10 20 30 40 50
Memory Access

Code (VA)

1224

1174

1124

1074

1024
32

7282

7232
4196

4146

4096

Page Table (PA)

Array (PA)

Code (PA)



Paging

 Faster translation

- With the help of hardware (in MMU)

 Translation Lookaside Buffer (TLB)
e Cache
 Temporal and spatial locality

 Smaller page table
- Hybrid segmentation and paging
- Multi-layer page table
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