

Operating System Labs

Yuanbin Wu
cs@ecnu

Operating System Labs

● Project 3
– Due: 6 Dec.

Oral Tests

● Project 2 oral test
– Date: Nov. 30

● How
– 10min presentation
– 5min Q&A

Oral Tests

● Who
– Principle: you should take at least one oral

test
– We assume that you know all

design/implementation details about your
project

Oral Tests

● Examples organization of presentations
– What have you done?

● Project background

– How did you accomplish them?
● data structures, algorithms,

– Your favorite parts.
– Features that you’ve tried, but failed
– What did you learn from the project?
– Possible future improvements
– …

● Highlight your new features (of part a or part b)

Oral Tests

● Suggestions for your slides
– The clew model and onion model
– Minimize words, maximize pictures
– Simple and clear
– Large font

● Suggestions for your talk
– If you are an audience of your own talk...
– Design your rhythm, pauses, actions…
– Practice

Oral Tests

● Suggestions from Jonathan Shewchuk (UC
Berkeley)
– http://www.cs.berkeley.edu/~jrs/speaking.htm

l
● How to speak, by Patrick Winston (MIT)

– https://www.bilibili.com/video/BV1K54y1m7M
6?from=search&seid=320703772139902162
1

–

http://www.cs.berkeley.edu/~jrs/speaking.html
http://www.cs.berkeley.edu/~jrs/speaking.html
https://www.bilibili.com/video/BV1K54y1m7M6?from=search&seid=3207037721399021621
https://www.bilibili.com/video/BV1K54y1m7M6?from=search&seid=3207037721399021621
https://www.bilibili.com/video/BV1K54y1m7M6?from=search&seid=3207037721399021621

Operating System Labs

“I am trained to only sleep during national holidays”

Operating System Labs

● Review of Memory Management
● Project 2 part b(xv6)

Memory Management

● Early days

Memory Management

● Multiprogramming
– multiple processes could be ready to run at a

given time
– the OS would switch between them

● Time sharing
– many users might be concurrently using a

machine

Memory Management
● Multiprogramming and Time Sharing

– Multiple processes live in memory
simultaneously

Memory Management

● Multiprogramming requires easy-to-use
virtualization of memory
– A concept called “address space”

Memory Management

● Two views on memory
– From processes: different processes have

different address spaces
– From OS: limited physical memory cells

Memory Management

● Memory management
– How OS provides such easy-to-use address

spaces for processes?
– Virtualization of memory

● Recall: virtualization of CPU

Memory Management

● Goals of Virtualize Memory
– Transparency
– Efficiency
– Protection

● The OS should make sure to protect processes
from one another

Memory Management

● Transparency
– OS should implement virtual memory in a

way that is invisible to the running program
– From the programmer's point of view:

● Every address is fraud
● Only the OS knows the truth

Memory Management

● Virtualize Memory: Limited Direct Execute
– Hardware:

● transparency, efficiency, protection

– OS:
● configure hardware correctly
● manage free memory
● handle exception

● Hardware-based address translation

Memory Management

● Hardware: Transparency
– We starts with a simple idea called

● Base and bounds
● Dynamical (hardware-based) allocation

void func ()
{

int x;
x = x + 3;

}

128: movl 0x0(%ebx), %eax ;load 0+ebx into eax
132: addl $0x03, %eax ;add 3 to eax register
135: movl %eax, 0x0(%ebx) ;store eax back to mem

Fetch instruction at address 128
Execute this instruction (load from address 15 KB)
Fetch instruction at address 132
Execute this instruction (no memory reference)
Fetch the instruction at address 135
Execute this instruction (store to address 15 KB)

An Example

Address space Physical Memory

Base: 32K
Bound: 16K

Hardware:
 - 2 registers in CPU
 - Base: the start of phy mem
 - Bound: the size of phy mem

physical = virtual + base

Address Space Physical Memory

Fetch instruction at address 128
Execute (load from address 15 KB)
Fetch instruction at address 132
Execute (no memory reference)
Fetch the instruction at address 135
Execute (store to address 15 KB)

physical = virtual + base

 128 + 32K
= 128 + 32768
= 32896

Base: 32K
Bound: 16K

Visiting address 128

Address Space Physical Memory

Fetch instruction at address 128
Execute (load from address 15 KB)
Fetch instruction at address 132
Execute (no memory reference)
Fetch the instruction at address 135
Execute (store to address 15 KB)

physical = virtual + base

 15K + 32K
= 47K

Base: 32K
Bound: 16K

128: movl 0x0(%ebx), %eax

Memory Management

● Hardware: Protection
– Bounds reg
– Raise an exception when the required

address is illegal
– Know how to do when exceptions are raised
– E.g.

● Then address 4400 is illegal according to the
Bound

Base: 0
Bound: 4K

Memory Management

● Hardware: Efficiency
– The registers are in CPU chip
– The part of CPU related to address translation

is called: MMU (memory management unit)

Memory Management

● Hardware requirements summary
– Privileged mode
– Base/bounds registers
– Ability to translate virtual addresses and check if

within bounds
– Privileged instruction(s) to update base/bounds
– Privileged instruction(s) to register exception

handlers
– Ability to raise exceptions

Memory Management

● OS:
– Maintain a data structure: free list

● Find place in physical memory for a process when
creating it

● Collect the space when a process terminate

– Context switch
● Correctly configure base / bound register

– Handle exception

Memory Management

● Two implementation of virtual memory
– Segmentation
– Paging

Segmentation

● The problem of Base and Bound
– Load entire address space
– Wasteful
– How to support large address space

Segmentation

● Solution:
– Multiple base/bound
– 3 logical segmentations

● Code
● Stack
● Heap

– 3 groups of base/bound registers

Segmentation

● Multiple base/bound
– Physical memory

Segmentation Base Size

Code 32K 2K

Heap 34K 2K

Stack 28K 2K

Example: multiple base/bound

Visit virtual memory
 100

Address translation:
 32K+100 = 32868

Address checking:
 100 < 2K

Visit physical memory:
 32868

Segmentati
on

Base Size

Code 32K 2K

Heap 34K 2K

Stack 28K 2K

Example: multiple base/bound

Visit virtual memory
 4200

Address translation:
 34K+(4200-4K)=34920

Address checking:
 104 < 2K

Visit physical memory:
 34920

Segmentati
on

Base Size

Code 32K 2K

Heap 34K 2K

Stack 28K 2K

Example: multiple base/bound

Visit virtual memory
 4200

Address translation:
 34K+(4200-4K)=34920

Address checking:
 104 < 2K

Visit physical memory:
 34920

Problem:
How we know 4200 is at heap?
How to interpret an virtual address?

Segmentation

● Which segmentation are we referring to
– Explicit approach

● top few bits of the virtual address

– Example:
● 16K address space → 14 bit

Segmentation

● Which segmentation are we referring to
– Example: 4200

Segmentation

● Which segmentation are we referring to

// get top 2 bits of 14-bit VA
Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT

// now get offset
Offset = VirtualAddress & OFFSET_MASK
if (Offset >= Bounds[Segment])
 RaiseException(PROTECTION_FAULT)
else
 PhysAddr = Base[Segment] + Offset

Register = AccessMemory(PhysAddr)

Segmentation

● About the stack
– Difference

● growth backwards
● 28K - 26K

Segmentation Base Size

Code 32K 2K

Heap 34K 2K

Stack 28K 2K

Segmentation

● About the stack
– Solution: extra hardware support
– one bit in MMU

● 1: growth in positive direction
● 0: growth in negative direction

Segmentati
on

Base Size Grows
Postive

Code 32K 2K 1

Heap 34K 2K 1

Stack 28K 2K 0

Example: multiple base/bound
Visit virtual memory
 15K

Address translation:
[1] segment = 11 → stack reg
[2] offset = 3K
[3] maximum segment = 4K
[4] 3K – 4K = -1K
[5] physical addr:
 28K + (-1K)= 27K

Address checking:
 |-1K| < 2K

Visit physical memory:
 27K

Segmentation Base Size Grows
Postive

Code 32K 2K 1

Heap 34K 2K 1

Stack 28K 2K 0

11 11 00 00 00 00 00

Segmentation

● Support for Sharing
– Protection bit

Segmentatio
n

Base Size Grows
Postive

Protection

Code 32K 2K 1 Read-
Execute

Heap 34K 2K 1 Read-Write

Stack 28K 2K 0 Read-Write

Segmentation

● Summary
– Base/Bound registers in MMU
– Multiple Base/Bound
– Growth direction
– Protection

● Problem
– Where to place new address spaces
– External fragmentation
– Free memory management

Paging

● Segmentation
– Splitting address space with variable size

logical segmentations
● Paging

– Divide address space into fixed size units
(pages)

Paging
● Example:

– 64 Byte address space (i.e., 6 bit pointer)
– 16 Byte page
– 128 Byte physical memory

Pages of the virtual address space
are placed at different locations
throughout physical memory

Paging

● Advantages
– Flexible

● make no assumptions about the direction the
heap/stack grow, how they are used.

– Simple
● Simple free memory management
● A free list of free pages

Paging

● Virtual page → physical frame
– Page Table
– A data structure

● VP0 → PF3
● VP1 → PF7
● VP2 → PF5
● VP3 → PF2

– In each process

Paging

● Address translation
– Virtual address:

● Virtual Page Num (VPN)
● Offset

– Example
● 64 Byte virtual address (6 bit pointer)
● 16 Byte per page

● Address translation
– movl 21, %eax
– Binary of 21: 010101
– 5th byte (0101) of 1st virtual page (01)

● VP1 → FP7

Paging

● Address translation

Paging

● Questions
– Where are page tables stored?
– What are the typical contents of the page

table?
– How big are the tables?
– Does paging make the system (too) slow?

Paging
● How big are the tables?

– 32bit address space
– 4K page size
– 20bit VPN + 12bit offset
– 220 = 1M

translations that the OS would manage
– For each process!

● Page Table Entry (PTE)
– 4 Byte

● Page table size: 220 * 4 = 4M
● If we have 100 active processes: 400M
● How about 64bit systems?

Paging

● Where are page tables stored?
– Not in MMU (so big)
– In OS's memory

● Physical memory managed by OS
● Virtual memory of OS (can be swapped out)

Paging

● What's actually in a page table?
– Page Table Entry (PTE)
– An array (linear page table)
– OS indexes the array with VPN

● PTE
– PFN
– Valid bit: whether the VPN is unused
– Protection bit: read/write/execute
– Present bit: whether the page on physical memory or on disk (swapped out)
– Dirty bit: whether the page has been modified since it is brought into

memory
– Reference bit: whether a page has been accessed

Paging

● Too slow

● Example

VPN = (VirtualAddress & VPN_MASK) >> SHIFT

PTEAddr = PageTableBaseRegister + (VPN * sizeof(PTE))

int array[1000];
...
for (i = 0; i < 1000; i++)
 array[i] = 0;

0x1024 movl $0x0, (%edi,%eax,4)
0x1028 incl %eax
0x102c cmpl $0x03e8, %eax
0x1030 jne 0x1024

Paging

● Too slow

Paging

● Faster translation
– With the help of hardware (in MMU)

● Translation Lookaside Buffer (TLB)
● Cache
● Temporal and spatial locality

● Smaller page table
– Hybrid segmentation and paging
– Multi-layer page table

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

