Operating System Labs

Yuanbin Wu
cs@ecnu

Operating System Labs

* Project 3
- Due: 6 Dec.

Oral Tests

* Project 2 oral test
- Date: Nov. 30

c How

- 10min presentation
- 5min Q&A

Oral Tests

e Who

- Principle: you should take at least one oral
test

- We assume that you know all
design/implementation details about your
project

Oral Tests

 Examples organization of presentations

- What have you done?
* Project background

- How did you accomplish them?
* data structures, algorithms,

- Your favorite parts.

- Features that you've tried, but failed
- What did you learn from the project?
- Possible future improvements

* Highlight your new features (of part a or part b)

Oral Tests

» Suggestions for your slides

- The clew model and onion model

- Minimize words, maximize pictures
- Simple and clear

- Large font

* Suggestions for your talk

f you are an audience of your own talk...
Design your rhythm, pauses, actions...

Practice

Oral Tests

* Suggestions from Jonathan Shewchuk (UC
Berkeley)

— Ihttp://www.cs.berkeley.edu/~jrs/speaking.htm

* How to speak, by Patrick Winston (MIT)

- https://www.bilibili.com/video/BV1K54y1m7M
613? rom=search&seid=320703772139902162

http://www.cs.berkeley.edu/~jrs/speaking.html
http://www.cs.berkeley.edu/~jrs/speaking.html
https://www.bilibili.com/video/BV1K54y1m7M6?from=search&seid=3207037721399021621
https://www.bilibili.com/video/BV1K54y1m7M6?from=search&seid=3207037721399021621
https://www.bilibili.com/video/BV1K54y1m7M6?from=search&seid=3207037721399021621

Operating System Labs

“I am trained to only sleep during national holidays”

SIMCE I BECAME
PROJECT MANMNAGER ,

MO ONE HAS RETURNED
MY CALLS OR RESPOND-
ED TO MY E-MAILS.

i 2003 Uniled Fealure Syndicabs, lnd.

soottadamaBaploom

LUCKILY,I'™M A CMU
GRADUATE , MENTALLY
SUPERIOR TO MOST
PEOPLE OM EARTH,S0 1
FIMISHED THE PROJECT
MYSELF.

F-iE-03 © 2003 UPnited Feature Syndicats, lae.

ARE
YOU
TIRED?

I AM TRAINED
TO OMLY SLEEP
DURING
NMATIOMAL
HOLIDAYS.

Operating System Labs

* Review of Memory Management
* Project 2 part b(xv6)

Memory Management

OKEBE

* Early days

Operating System
(code, data, etc.)

64KE

Current Program
(code, data, etc.)

max

Memory Management

* Multiprogramming

- multiple processes could be ready to run at a
given time

- the OS would switch between them
* Time sharing

- many users might be concurrently using a
machine

Memory Management
 Multiprogramming and Time Sharing
- Multiple processes live in memory

simultaneously
OKE
Operating System
(code, data, etc.)
G4KB
(iree)
128KB
Process C
(code, data, etc.)
192KB
Process B
(code, data, etc.)
256KB
{free)
320KB
Process A
(code, data, etc.)
384KB
{free)
448KB
(free)

512KB

Memory Management

 Multiprogramming requires easy-to-use
virtualization of memory

- A concept called “address space”

OKB
the code sagmeant:
F‘rogram Code where instructions live
1KB
the heap segment:
Heap contains malloc'd data
KB dynamic data siructures
l (it grows downward)
(free)
‘ (it grows upward)
the stack segment:
15KB contains local variables
arguments o roulines,
Stack return values, elc.
16KE

Memory Management

* Two views on memory

- From processes: different processes have

different address spaces

- From OS: limited physical memory cells

OKB

E4KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Frocess B
(code, data, etc.)

{free)

Process A
(code, data, etc.)

{free)

(free)

OKB

1KB

2KB

15KB

16KB

Program Code

Heap

(free)

Stack

the coda sagmant:
where instructions live

the heap segment,
contains malloc'd data
dynamic data structuras

(it grows downward)

(it grows upward)
the stack sagment:
contains local variables
arguments to roufinas,
rafurn values, efe,

Memory Management

« Memory management

- How OS provides such easy-to-use address
spaces for processes?

- Virtualization of memory
 Recall: virtualization of CPU

Memory Management

* Goals of Virtualize Memory

- Transparency
- Efficiency
- Protection

 The OS should make sure to protect processes
from one another

Memory Management

* Transparency

- OS should implement virtual memory in a
way that is invisible to the running program

- From the programmer's point of view:

 Every address is fraud
 Only the OS knows the truth

Memory Management

* Virtualize Memory: Limited Direct Execute

- Hardware:

* transparency, efficiency, protection
- OS:

« configure hardware correctly

* manage free memory
 handle exception

« Hardware-based address translation

Memory Management

 Hardware: Transparency

- We starts with a simple idea called

 Base and bounds
 Dynamical (hardware-based) allocation

OKB

An Example e 195 | o veoax Doroueb)
Program Code
2KB
\{/oid func () KB Heap
int x; 4KB
X =X+ 3; l
}
128: movl 0x0(%ebx), %eax ;load O+ebx into eax
132: addl $0x03, %eax ;add 3 to eax register
135: movl %eax, 0x0(%ebx) ;store eax back to mem (free)
Fetch instruction at address 128
Execute this instruction (load from address 15 KB)
Fetch instruction at address 132
Execute this instruction (no memory reference) ‘
Fetch the instruction at address 135 14KB
Execute this instruction (store to address 15 KB) D .
Stack

16KB

Address space

OKB

1KB

2KB

3KB

4KB

14KB

15KB

16KB

128
130
133

e D0 ¥eabin), Yeaax
addl 0=03, %%eax
gl e, x| Seeh)

Program Code

Heap

(free)

3000
Stack

Hardware: OKB
- 2 reqisters in CPU
- Base: the start of phy mem
- Bound: the size of phy mem

16KE

<)

| | 32KB
physical = virtual + base

Base: 32K

Bound: 16K AGKE

64KE

Operating System

(not in use)

Code
H'il‘[m
(allocated but not in uss)

T

Stack

[not in usée)

Physical Memory

Helocated Process

Relocated Process

physical = virtual + base Address Space Physical Memory
OKB 128 [o] Dx{ Yeab), Veaax
Fetch instruction at address 128 g [T e e OKB
Execute (load from address 15 KB) Program Code
Fetch instruction at address 132 2KB Operating System
Execute (no memory reference) . eap
Fetch the instruction at address 135 16KB
Execute (store to address 15 KB) 4KB
l (not in use)
Visiting address 128 42KB A i}
Heap
!
128 + 32K (allocated but not in uss)
—_— |
= 128 + 32768 48KE S |
—_ 32896 (free)
[nm in UEE]I
64KB
Base: 32K 14KB ‘
Bound: 16K I
Stack
16KE

physical = virtual + base Address Space Physical Memory

OKB

128 [o] Dx{ Yeab), Veaax
130 | addl 0x03, Yeeax

Relocated Process

Fetch instruction at address 128 g e (et OKB
Execute (load from address 15 KB) Program Code
Fetch instruction at address 132 2KB Operating System
Execute (no memory reference) . eap
Fetch the instruction at address 135 16KB
Execute (store to address 15 KB) 4KB
l (not in use)
128: movl 0x0(%ebx), Y%eax 39KB _
Ciode
Heap
'
15K + 32K [allocated but not in uss)
—_— |
-_ 47K ABKB Stack |
(free)
(Aot in usea)

64KEB

Base: 32K 14KB ‘
Bound: 16K oK

16KB

2000
Stack

Memory Management

« Hardware: Protection

- Bounds reg

- Raise an exception when the required
address is illegal

- Know how to do when exceptions are raised
- E.qQ.

Base: O
Bound: 4K

« Then address 4400 is illegal according to the
Bound

Memory Management

 Hardware: Efficiency

- The reqisters are in CPU chip

- The part of CPU related to address translation
Is called: MMU (memory management unit)

Memory Management

« Hardware requirements summary

- Privil

eged mode

- Base/bounds registers
- Ability to translate virtual addresses and check if

withi
- Privi
- Privi

NaNnC

n bounds
eged instruction(s) to update base/bounds

eged instruction(s) to register exception
lers

- Ability to raise exceptions

Memory Management

e OS:

- Maintain a data structure: free list

* Find place in physical memory for a process when
creating it

* Collect the space when a process terminate
- Context switch

« Correctly configure base / bound register
- Handle exception

OS @ boot Hardware
(kernel mode)

initialize trap table
remember addresses of...
system call handler
timer handler
illegal mem-access handler
illegal instruction handler
start interrupt timer
start timer; interrupt after X ms
initialize process table
initialize free list

0OS @ run
(kernel mode)

Hardware Program
(user mode)

To start process A:
allocate entry in process table

allocate memory for process
set base/bounds registers

return-from-trap (into A)

restore registers of A
move to user mode
jump to A’s (initial) PC
Process A runs
Fetch instruction

Memory Management

* Two implementation of virtual memory

- Segmentation
- Paging

Segmentation

 The problem of Base and Bound

- Load entire address space
- Wasteful
- How to support large address spac

OKB

1KB

2KB

3KB

B

KB

5KB

6KEB

14KB

15KB

16KB

Program Code

free)

Stack

Segmentation

e Solution:

- Multiple base/bound

- 3 logical segmentations

 Code
e Stack
* Heap

- 3 groups of base/bound registers

Segmentation

. OKB
* Multiple base/bound
: Operating System
- Physical memory
: 16KB
Segmentation Base Size
(not In use)
Code 32K 2K sgm
32KB LA
Heap 34K 2K Hegg
Stack 28K 2K
48KB \
(not in use)

64KEBE

Example: multiple base/bound

OKE

16KE

J2KB

48KB

G64KEB

Visit virtual memory

Operating System

100

v

Address translation:
32K+100 = 32868

v

Address checking:

Size

2K
2K

(not i|;| use) 100 < 2K
Stachk +
(not in use) L . .
Code) Visit physical memory:
HE"fF' 32868
(not in use) Segmentati Base
on
Code 32K
Heap 34K
Stack 28K

2K

OKB

1KE

2KB

3KB

4KB

5KB

6KB

14KB

15KB

16KB

—

Program Code

Heap

{free)

Stack

Example: multiple base/bound

OKE

16KE

J2KB

48KB

G64KEB

Visit virtual memory

Operating System

4200
v

Address translation:
34K+(4200-4K)=34920

. Address checking:
(not ||;| use) 104 < 2K

Siack +
[nutl;:d:se} Visit physical memory:
MO Segmentati Base Size

on
Code 32K 2K
Heap 34K 2K

Stack 28K 2K

OKB

3KB

4KB

5KB

6KB

14KB

15KB

16KB

Program Code

{free)

Stack

Example: multiple base/bound

OKE

16KE

J2KB

48KB

G64KEB

Visit virtual memory

Operating System

4200
v

Address translation:
34K+(4200-4K)=34920

v

Address checking:

(not in use) 104 < 2K
51;|:h +
(not in use) Visit physical memory:
Code
_ Problem:
(not in use) How we know 4200 is at heap?

OKB

3KB

4KB

5KB

6KB

How to interpret an virtual address?

15KB

16KB

Program Code

{free)

Stack

Segmentation

 Which segmentation are we referring to

- Explicit approach

* top few bits of the virtual address
- Example:

16K address space —» 14 bit

[| [[T [[T T 1T T]]

Eegﬁ'nent Offsel

Segmentation

 Which segmentation are we referring to
- Example: 4200

‘1111][:":][:'[]11[)1[:"3[:"

Segment Offses

Segmentation

 Which segmentation are we referring to

/] get top 2 bits of 14-bit VA
Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT

/] now get offset

Offset = VirtualAddress & OFFSET_MASK

if (Offset >= Bounds[Segment])
RaiseException(PROTECTION_FAULT)

else

PhysAddr = Base[Segment] + Offset

Register = AccessMemory(PhysAddr)

Segmentation

OKB
 About the stack
' Operating Syst
- Difference perating System
« growth backwards 16KB
* 28K - 26K (not in use)
51;|:h
319KB (not I;:d ;.Jse}
Hegp
Segmentation Base Size i
Code 32K 2K 48K -
(not in use)
Heap 34K oK
Stack 28K 2K 84KE

Segmentation

« About the stack

- Solution: extra hardware support

- one bit in MMU

* 1: growth in positive direction
* 0: growth in negative direction

Segmentati Base Size Grows

on Postive
Code 32K 2K 1
Heap 34K 2K 1

Stack 28K 2K 0

OKB

Example: multiple base/bound
Visit virtual memory 1KB Program Code
15K |11 11 00 00 00 00 00
\
OKB Address translation:
[1] segment = 11 - stack reg 4KB
Operating System [2] offset = 3K 5KB Hea
[3] maximum segment = 4K P
[4] 3K - 4K = -1K 6KB
1GKE [5] physical addr: l
51aTch ~— #
(not in use)
32KB Code Address checking:
sz I-1K| < 2K (74
\/
Visit physical memory:
48KE :
(not in use)
Segmentation Base Size Grows ‘
Postive
14KE
Code 32K 2K 1
64KB Heap 34K 2K 1 ore ek
16KB

Segmentation

* Support for Sharing
- Protection bit

Segmentatio Base Size Grows Protection
n Postive
Code 32K 2K 1 Read-
Execute
Heap 34K 2K 1 Read-Write

Stack 28K 2K 0 Read-Write

Segmentation

« Summary

- Base/Bound registers in MMU
- Multiple Base/Bound

- Growth direction

- Protection

* Problem
- Where to place new address spaces

- External fragmentation
- Free memory management

Paging

 Segmentation

- Splitting address space with variable size
logical segmentations

* Paging

- Divide address space into fixed size units
(pages)

Paging

 Example:

- 64 Byte address space (i.e., 6 bit pointer)

- 16 Byte page

- 128 Byte physical memory

0
{paga 0 of the address EFIE.E:E}
16
(page 1)
32
(page 2)
48
(page 3)
64

Pages of the virtual address space
are placed at different locations
throughout physical memory

0

16

32

48

64

80

96

112

128

reserved for OS

{unused)

page 3 of AS

page 0 of AS

{unused)

page 2 of AS

(unused)

page 1 of AS

page frame 0 of physical memory

page frame 1

page frame 2

page frame 3

page frame 4

page frame 5

page frame 6

page frame 7

Paging

 Advantages

- Flexible

 make no assumptions about the direction the
heap/stack grow, how they are used.

- Simple
 Simple free memory management
* A free list of free pages

Paging

* Virtual page —» physical frame

- Page Table

- A data structure
VPO - PF3
VP1 - PF7
VP2 - PF5
VP3 - PF2

- In each process

16

32

80

96

112

128

reserved for OS

{unused)

page 3 of AS

page 0 of AS

{unused)

page 2 of AS

{unused)

page 1 of AS

page frame 0 of physical memary

page frame 1

page frame 2

page frame 3

page frame 4

page frame 5

page frame 6

page frame 7

« Address translation

- Virtual address:
* Virtual Page Num (VPN)

« Offset
- Example

64 Byte virtual address (6 bit pointer)
16 Byte per page

Paging

VPN

oftset

Vah

Vad

Val

Va2

Vai

Val

Va3

Vad

Vad

Vad

Vai

Val

« Address translation

- movl 21, %eax
- Binary of 21: 010101

- 5th pyte (0101) of 1st virtual page (01)

+ VP1 - FP7

16

32

80

96

112

reserved for OS5

{unused)

page 3 of AS

page 0 of AS

{unused)

page 2 of AS

{unused)

A page 1 of AS

page frame 0 of physical memaory

page frame 1
page frame 2
page frame 3
page frame 4
page frame 5
page frame 6

page frame 7

Paging

« Address translation

VPN offset
Virtual
Address 0 ! 0 ! .
Address
Translation
Vbbb b
Physical
Addrass 1 1 1 0 1 0

PFN offset

Paging

e Questions

- Where are page tables stored?

- What are the typical contents of the page
table?

- How big are the tables?
- Does paging make the system (too) slow?

Paging

How big are the tables?

- 32Dbit address space
- 4K page size
— 20bit VPN + 12bit offset
- 220 = 1M
translations that the OS would manage
- For each process!

Page Table Entry (PTE)

- 4 Byte

Page table size: 220 * 4 = 4M

If we have 100 active processes: 400M
How about 64bit systems?

Paging

« Where are page tables stored?

- Not in MMU (so big)

- In OS's memory

* Physical memory managed by OS
* Virtual memory of OS (can be swapped out)

Paging

 What's actually in a page table?

- Page Table Entry (PTE)
- An array (linear page table)
- OS indexes the array with VPN

- PTE

- PFN

- Valid bit: whether the VPN is unused

- Protection bit: read/write/execute

Present bit: whether the page on physical memory or on disk (swapped out)

- Dirty bit: whether the page has been modified since it is brought into
memory

Reference bit: whether a page has been accessed

]

1 30 20 28 27 28 26 24 23 22 21 2019 18 17 1615 14 13121110 9 B T & &

|
PFN z|o|<|3
ClE &

PWT [
RW |~
=l

Paging

* Too slow

VPN = (VirtualAddress & VPN_MASK) >> SHIFT

PTEAddr = PagelableBaseRegister + (VPN * sizeof(PTE))

« Example

int array[1000];

for (i = 0:i < 1000: i+4)
array[i] = 0;

0x1024 movl $0x0, (%edi,%eax,4)
0x1028 incl %eax

0x102c cmpl $0x03e8, %eax
0x1030 jne 0x1024

* Too slow

Paging

PageTable[39]

PageTable[1)

e~ T S S R T T T S T

40100 ~ 2 -
E

40050 - -

Array (VA)

40000 —= —
1124 -

inc

maov
emp
jne

1074 - -

1024 -l nl .I. nN u L nb .I. nlN .r. n® .
0 10 20 30 40 50
Memory Access

Code (VA)

1224

1174

1124

1074

1024
32

7282

7232
4196

4146

4096

Page Table (PA)

Array (PA)

Code (PA)

Paging

 Faster translation

- With the help of hardware (in MMU)

 Translation Lookaside Buffer (TLB)
e Cache
 Temporal and spatial locality

 Smaller page table
- Hybrid segmentation and paging
- Multi-layer page table

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

