

Operating System Labs

Yuanbin Wu
CS@ECNU

Operating System Labs

● 16 Dec.
– Oral test (proj 3)

● Project 4:
– Due: 29 Dec
– Oral test: 30 Dec

Operating System Labs

● Overview of file system
– File system API
– File system implementation

● Project 4
– Linux: file system
– xv6: thread

File System API

● Previous
– CPU: process, thread
– Memory: address space, virtual memory

management
● Now

– File system: persistent storage

File System API

● Regular File
– File name: user readable
– inode number: low-level file name
– Contents: figure, text, video

● Directory
– Directory name: user readable
– inode number: low-level directory name
– Contents: file and sub-directories

File System API

● Directories
– Content :

● tuples: (user-readable name, inode number)

– Directory tree

File System API

● File System APIs
– Basic I/O interface (lecture2)

● File descriptor
● open, read, write, close, lseek
● buffer

– strace

– Other APIs

% strace cat foo

File System API

● Renaming files

% strace mv foo bar

#include <stdio.h>

int rename(char *old, char *new)

File System API

● Renaming files
– Atomic

● the system can crash during renaming
● either old name or new name

int fd = open("foo.txt.tmp", O_WRONLY|O_CREAT|O_TRUNC);
write(fd, buffer, size); // write out new version of file
fsync(fd);
close(fd);
rename("foo.txt.tmp", "foo.txt");

File System API

● Get information about files
– meta data

#include <sys/stat.h>

int fstat(int fildes, struct stat *buf);

% stat bar

struct stat {
 dev_t st_dev; // ID of device containing file
 ino_t st_ino; // inode number
 mode_t st_mode; // protection
 nlink_t st_nlink; // number of hard links
 uid_t st_uid; // user ID of owner
 gid_t st_gid; // group ID of owner
 dev_t st_rdev; // device ID (if special file)
 offset_t st_size; // total size, in bytes
 blksize_t st_blksize; // blocksize for filesystem I/O
 blkcnt_t st_blocks; // number of blocks allocated
 time_t st_atime; // time of last access
 time_t st_mtime; // time of last modification
 time_t st_ctime; // time of last status change
};

File System API

● Removing file

% strace rm bar

#include <unistd.h>

int unlink(const char *pathname);

File System API

● Making Directories

% strace mkdir foo

#include <unistd.h>

int mkdir(const char *pathname);

File System API

● Reading Directories

% strace ls

int getdents(unsigned int fd,
 struct linux_dirent *dirp,
 unsigned int count);
// no glibc wrappers (with the same name) for it

File System API

● Reading Directories
– Glibc: DIR stream (recall the FILE stream)

#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *name);
int closedir(DIR *dirp);

#include <dirent.h>

struct dirent *readdir(DIR *dirp);

File System API

● Reading Directories

struct dirent {
 char d_name[256]; //filename
 ino_t d_ino; //inode number
 off_t d_off; //opaque value
 unsigned short d_reclen; //length of this record
 unsigned char d_type; //type of file
};

File System API

● Reading Directories
– A simple ls

int main(int argc, char *argv[]) {
 DIR *dp = opendir(".");
 assert(dp != NULL);
 struct dirent *d;
 while ((d = readdir(dp)) != NULL) {
 printf("%d %s\n", (int) d->d_ino, d->d_name);
 }
 closedir(dp);
 return 0;
}

File System API

● Remove Directories

% strace rmdir

int rmdir(const char* name);
// remove empty directory

File System API

● Hard links
– Link(): create a new way to refer the same

file

#include <unistd.h>

int link(const char* old, const char* new);

% cat file
% ln file file1
% cat file1
% ls -i file file1

File System API

● Hard links
– unlink(): the reverse of link()

#include <unistd.h>

int unlink(const char* filename);

% rm file
% cat file1
% ls -i file1

File System API

● Hard links
– A field in inode structure: reference count

% ln file file1
% stat file
% ln file1 file2
% stat file
% ln file2 file3
% stat file
% rm file1
% stat file

File System API

● Symbolic links
– Limitations of hard links

● Can not link directories → cycles are not allowed
● Can not hard link across partitions

– Symbolic links
● A new file type (regular file, directory, symbolic link)
● Different from the original file
● The content of a symbolic links

– Pathname of the linked-to file

File System API

● Symbolic links

% ln -s file file1
% stat file
% stat file1
% ls -al
% rm file
% cat file1

% echo hello > verylongfile
% ln -s verylongfile file
% ls -al

File System API

● Making and Mounting file systems
– mkfs:

● Input: a partition and a fs type
● Output: a file system

– Mount:
● Put the new file system in the current directory

tree

File System API

● Summary
– File, directory, symbolic link
– open(), read(), write(), lseek(), close()
– link(), unlink()
– readdir(), mkdir()

File System Implementation

● A very simple file system (vsfs)
– pure software (different from process/vm)

● The way to think about a file system
– Data structures
– Access methods

File System Implementation

● The way to think about a file system
– Data structures

● How to organize files?

– Things to manage
● Files
● Meta data of files (inode)
● Free space

File System Implementation

● The way to think about a file system
– Access methods

● open(), read(), write()
● opendir(), readdir()
● link(), unlink()

File System Implementation

● Data structure: overall organization
– Block

● A file system manipulate blocks (not byte)
● Commonly used: 4KB

– We have a disk with 64 blocks (256KB)

File System Implementation

● Data structure: overall organization
– Data region
– We have 56 blocks for storing data (D)

File System Implementation

● Data structure: overall organization
– Meta data: information about files

● size, reference count, protection, access time
● Inode

– We have 5 blocks for inodes (I)
● Assume each inode 256B (16 inodes per block)
● We can handle 80 files

File System Implementation

● Data structure: overall organization
– Allocation structures (free list)

● Which blocks are allocated?

– We will use the “bitmap”
● Each bit indicates whether a block is used
● one for data region (d), one for inode table (i)
● What are sizes of the bitmaps?

File System Implementation

● Data structure: overall organization
– Superblock

● Metadata of the whole file system
● How many inodes and data blocks?
● The start of inode table/data region

– We use the left 1 block as superblock (S)

File System Implementation

● Summary
– Data structure: overall organization

● Data region
● Inode table
● Bitmaps
● Superblock

File System Implementation

● Data structure: the inode
– Inode number:

● its index in the inode table
● Low-level name of the file

File System Implementation

● Data structure: the inode
– Locating an inode through inode number
– Example: file with inode number 32

● Offset: 32*256 + 12K = 8K + 12K = 20K
● For a read from disk (only read sectors)

– Sector size: 512
● Finally the disk will read sector: 40 (20K/512)

File System Implementation

● Data structure: the inode
– An inode contains

● The data blocks
● Type (file/directory/symbolic link)
● Reference count (link/unlink)
● Size (#blocks)
● Protection
● Time information

● The Ext2 inode

File System Implementation

● Data structure: the inode
– An inode contains

● The data blocks
● Type (file/directory/symbolic link)
● Reference count (link/unlink)
● Size (#blocks)
● Protection
● Time information

How to organize data
blocks in inodes?

File System Implementation

● Data structure: the inode
– How to locate data blocks

● direct pointers in inode structure
● Can not hold large files

– The multi-level Index
● Indirect pointers
● Point to data blocks which contain direct pointers

File System Implementation

● Data structure: the inode
– Example of multi-level Index

● An inode contains 12 direct pointers
● 1 indirect pointers

– Block size: 4K
– Block number: an int (4 Bytes)
– #direct pointers per block: 1K

● #direct pointers: 12 + 1K
● File size: (12 + 1K)*4K = 4144KB

File System Implementation

● Data structure: the inode
– Double indirect pointer

● # direct pointers: 1024 * 1024 = 1M
● File size: (12 + 1024 + 10242)*4K ≈ 4G

– Triple indirect pointer
– An imbalanced tree

● Most files are small

File System Implementation

● Summary
– Data structure: the inode

● Inode number
● Locating an inode
● Contents of an inode
● How to index data blocks

File System Implementation

● Data structure: directory
– Again: a directory is a file!

● An inode
● Data blocks

– The contents of its data blocks
● List of (entry name, inode number)
● Other data structures: B-trees, hash tables

File System Implementation

● Data structure: directory
– Example

● Directory: dir(5)
● Files: dir/foo(12), dir/bar(13), dir/foobar(24)

– Delete a file in the directory
● Can we reuse the entries?

File System Implementation

● Data structure: free space management
– Bitmaps

● Inode table
● Data region

– Other data structures: B-tree
– Pre-allocation

File System Implementation

● Summary
– Data structures for implementing an fs

● Overall organization
● Inode
● Directory
● Free list management

File System Implementation

● Different types of fs
– ext2, ext3, ext4, proc, cgroup
– The concept: virtual file system

● Provide unified view of different file systems

– For each file system
● Data structures: Inode, dentry, superblock
● Operations:

– Superblock operations: alloc_inode(), distroy_inode(),
read_inode(), write_inode();

– inode operations: create_inode(), lookup(), mkdir(), rename()
– File operations: read(), write(), open(); close(); lseek()

File System Implementation

File System Implementation

● Access methods
– read(), write()
– readdir()
– link(), unlink()

File System Implementation

● Access methods: read a file
– open("/foo/bar", O RDONLY); and read it

File System Implementation

● Access methods: create and write a file
– open("/foo/bar", O RDONLY); and write it

Can we change the order?

There are more operations!

File System Implementation

● Access methods: how to speed up?
– Cache
– Buffering

File System Implementation

● Summary
– The way to think about a file system

● Data structures
● Access methods

● Problems
– Locality is not preserved

File System Implementation

● Project 4
– Linux: file system defragmentation
– Xv6: support threads

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

