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Operating System Labs

● 16 Dec.
– Oral test (proj 3)

● Project 4:
– Due: 29 Dec
– Oral test: 30 Dec



  

Operating System Labs

● Overview of file system
– File system API
– File system implementation

● Project 4
– Linux: file system
– xv6: thread



  

File System API

● Previous
– CPU: process, thread
– Memory: address space, virtual memory 

management
● Now

– File system: persistent storage



  

File System API

● Regular File
– File name: user readable
– inode number: low-level file name
– Contents: figure, text, video

● Directory
– Directory name: user readable
– inode number: low-level directory name
– Contents: file and sub-directories 



  

File System API

● Directories
– Content :

● tuples: (user-readable name, inode number)

– Directory tree



  

File System API

● File System APIs
– Basic I/O interface (lecture2)

● File descriptor
● open, read, write, close, lseek
● buffer

– strace

– Other APIs

% strace cat foo



  

File System API

● Renaming files

% strace mv foo bar

#include <stdio.h>

int rename(char *old, char *new)



  

File System API

● Renaming files
– Atomic

● the system can crash during renaming
● either old name or new name

int fd = open("foo.txt.tmp", O_WRONLY|O_CREAT|O_TRUNC);
write(fd, buffer, size); // write out new version of file
fsync(fd);
close(fd);
rename("foo.txt.tmp", "foo.txt");



  

File System API

● Get information about files
– meta data

#include <sys/stat.h>

int fstat(int fildes, struct stat *buf);

% stat bar



  

struct stat {
  dev_t st_dev; // ID of device containing file
  ino_t st_ino; // inode number
  mode_t st_mode; // protection
  nlink_t st_nlink; // number of hard links
  uid_t st_uid; // user ID of owner
  gid_t st_gid; // group ID of owner
  dev_t st_rdev; // device ID (if special file)
  offset_t st_size; // total size, in bytes
  blksize_t st_blksize; // blocksize for filesystem I/O
  blkcnt_t st_blocks; // number of blocks allocated
  time_t st_atime; // time of last access
  time_t st_mtime; // time of last modification
  time_t st_ctime; // time of last status change
};



  

File System API

● Removing file

% strace rm bar

#include <unistd.h>

int unlink(const char *pathname);



  

File System API

● Making Directories

% strace mkdir foo

#include <unistd.h>

int mkdir(const char *pathname);



  

File System API

● Reading Directories

% strace ls

int getdents(unsigned int fd, 
                    struct linux_dirent *dirp, 
                    unsigned int count);
// no glibc wrappers (with the same name) for it



  

File System API

● Reading Directories
– Glibc: DIR stream (recall the FILE stream) 

#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *name);
int closedir(DIR *dirp);

#include <dirent.h>

struct dirent *readdir(DIR *dirp);



  

File System API

● Reading Directories

struct dirent {
  char d_name[256]; //filename
  ino_t d_ino; //inode number
  off_t d_off; //opaque value
  unsigned short  d_reclen; //length of this record
  unsigned char  d_type; //type of file
};



  

File System API

● Reading Directories
– A simple ls

int main(int argc, char *argv[]) {
    DIR *dp = opendir(".");
    assert(dp != NULL);
    struct dirent *d;
    while ((d = readdir(dp)) != NULL) {
        printf("%d %s\n", (int) d->d_ino, d->d_name);
    }
    closedir(dp);
    return 0;
}



  

File System API

● Remove Directories

% strace rmdir

int rmdir(const char* name);
// remove empty directory



  

File System API

● Hard links
– Link(): create a new way to refer the same 

file

#include <unistd.h>

int link(const char* old, const char* new);

% cat file
% ln file file1
% cat file1
% ls -i file file1



  

File System API

● Hard links
– unlink(): the reverse of link()

#include <unistd.h>

int unlink(const char* filename);

% rm file
% cat file1
% ls -i file1



  

File System API

● Hard links
– A field in inode structure: reference count

% ln file file1
% stat file
% ln file1 file2
% stat file
% ln file2 file3
% stat file
% rm file1
% stat file



  

File System API

● Symbolic links
– Limitations of hard links

● Can not link directories → cycles are not allowed
● Can not hard link across partitions

– Symbolic links
● A new file type (regular file, directory, symbolic link)
● Different from the original file
● The content of a symbolic links 

– Pathname of the linked-to file



  

File System API

● Symbolic links

% ln -s file file1
% stat file
% stat file1
% ls -al
% rm file
% cat file1

% echo hello > verylongfile
% ln -s verylongfile file
% ls -al



  

File System API

● Making and Mounting file systems
– mkfs: 

● Input: a partition and a fs type
● Output: a file system

– Mount:
● Put the new file system in the current directory 

tree



  

File System API

● Summary
– File, directory, symbolic link
– open(), read(), write(), lseek(), close()
– link(), unlink()
– readdir(), mkdir()



  

File System Implementation

● A very simple file system (vsfs)
– pure software (different from process/vm)

● The way to think about a file system
– Data structures
– Access methods



  

File System Implementation

● The way to think about a file system
– Data structures

● How to organize files?

– Things to manage
● Files
● Meta data of files (inode)
● Free space



  

File System Implementation

● The way to think about a file system
– Access methods

● open(), read(), write()
● opendir(), readdir()
● link(), unlink()



  

File System Implementation

● Data structure: overall organization
– Block

● A file system manipulate blocks (not byte)
● Commonly used: 4KB

– We have a disk with 64 blocks (256KB)



  

File System Implementation

● Data structure: overall organization
– Data region
– We have 56 blocks for storing data (D)



  

File System Implementation

● Data structure: overall organization
– Meta data: information about files

● size, reference count, protection, access time
● Inode

– We have 5 blocks for inodes (I)
● Assume each inode 256B (16 inodes per block)
● We can handle 80 files



  

File System Implementation

● Data structure: overall organization
– Allocation structures (free list)

● Which blocks are allocated?

– We will use the “bitmap” 
● Each bit indicates whether a block is used
● one for data region (d), one for inode table (i)
● What are sizes of the bitmaps? 



  

File System Implementation

● Data structure: overall organization
– Superblock

● Metadata of the whole file system
● How many inodes and data blocks?
● The start of inode table/data region

– We use the left 1 block as superblock (S)



  

File System Implementation

● Summary
– Data structure: overall organization

● Data region
● Inode table
● Bitmaps
● Superblock



  

File System Implementation

● Data structure: the inode
– Inode number: 

● its index in the inode table
● Low-level name of the file



  

File System Implementation

● Data structure: the inode
– Locating an inode through inode number
– Example: file with inode number 32

● Offset: 32*256 + 12K = 8K + 12K = 20K
● For a read from disk (only read sectors)

– Sector size: 512
● Finally the disk will read sector: 40 (20K/512)



  

File System Implementation

● Data structure: the inode
– An inode contains

● The data blocks
● Type (file/directory/symbolic link)
● Reference count (link/unlink)
● Size (#blocks)
● Protection
● Time information



  

● The Ext2 inode



  

File System Implementation

● Data structure: the inode
– An inode contains

● The data blocks
● Type (file/directory/symbolic link)
● Reference count (link/unlink)
● Size (#blocks)
● Protection
● Time information

How to organize data 
blocks in inodes?



  

File System Implementation

● Data structure: the inode
– How to locate data blocks

● direct pointers in inode structure
● Can not hold large files

– The multi-level Index
● Indirect pointers
● Point to data blocks which contain direct pointers



  

File System Implementation

● Data structure: the inode
– Example of multi-level Index

● An inode contains 12 direct pointers
● 1 indirect pointers

– Block size: 4K
– Block number: an int (4 Bytes)
– #direct pointers per block: 1K

● #direct pointers: 12 + 1K
● File size: (12 + 1K)*4K = 4144KB



  

File System Implementation

● Data structure: the inode
– Double indirect pointer

● # direct pointers: 1024 * 1024 = 1M
● File size: (12 + 1024 + 10242)*4K ≈ 4G

– Triple indirect pointer
– An imbalanced tree 

● Most files are small



  

File System Implementation

● Summary
– Data structure: the inode

● Inode number
● Locating an inode
● Contents of an inode
● How to index data blocks



  

File System Implementation

● Data structure: directory
– Again: a directory is a file!

● An inode
● Data blocks

– The contents of its data blocks
● List of (entry name, inode number)
● Other data structures: B-trees, hash tables



  

File System Implementation

● Data structure: directory
– Example

● Directory: dir(5)
● Files: dir/foo(12), dir/bar(13), dir/foobar(24)

– Delete a file in the directory
● Can we reuse the entries?



  

File System Implementation

● Data structure: free space management
– Bitmaps

● Inode table
● Data region

– Other data structures: B-tree
– Pre-allocation



  

File System Implementation

● Summary
– Data structures for implementing an fs

● Overall organization
● Inode
● Directory
● Free list management



  

File System Implementation

● Different types of fs
– ext2, ext3, ext4, proc, cgroup
– The concept: virtual file system

● Provide unified view of different file systems

– For each file system
● Data structures: Inode, dentry, superblock
● Operations: 

– Superblock operations: alloc_inode(), distroy_inode(), 
read_inode(), write_inode();

– inode operations: create_inode(), lookup(), mkdir(), rename()
– File operations: read(), write(), open(); close(); lseek()



  

File System Implementation



  

File System Implementation

● Access methods
– read(), write()
– readdir()
– link(), unlink()



  

File System Implementation

● Access methods: read a file
– open("/foo/bar", O RDONLY); and read it



  

File System Implementation

● Access methods: create and write a file
– open("/foo/bar", O RDONLY); and write it

Can we change the order?

There are more operations!



  

File System Implementation

● Access methods: how to speed up?
– Cache
– Buffering



  

File System Implementation

● Summary
– The way to think about a file system

● Data structures
● Access methods

● Problems
– Locality is not preserved



  

File System Implementation

● Project 4
– Linux: file system defragmentation
– Xv6: support threads
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